

SRS7 Series Debuts

Caged Ball LM Guide

Ball Cage Effect Lightweight, Compact Type

Ball Cage Effect

The early forms of ball bearings were full-ball types without ball cages. Friction between balls caused loud noise, made high-speed rotation impossible and shortened the service life. Twenty years later, a Caged Ball design was developed for ball bearings. The new design enabled high-speed rotation at a low noise level, and extended the service life despite the reduced number of balls used. It marked a major development in the history of ball bearings.

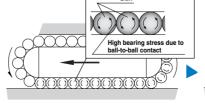
Similarly, the quality of needle bearings was significantly improved by the caged needle structure.

With cage-less, full-ball types of ball bearings, balls make metallic contact with one another and produce loud noise. In addition, they rotate in opposite directions, causing the sliding contact between two adjacent balls to occur at a speed twice the ball-spinning rate. It results in severe wear and shortens the service life.

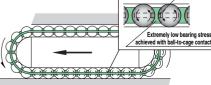
In addition, without a cage, balls make point contact to increase bearing stress, thus facilitating breakage of the oil film. In contrast, each caged ball contacts the cage over a wide area. Therefore, the oil film does not break, the noise level is low and balls can rotate at a high speed, resulting in a long service life.

- Superbly High Speed
- Low Noise, Acceptable Running Sound
- **Smooth Motion**
- **Low Dust Generation**

- Adjacent balls contact each other at a point. As a result, contact stress is high and the oil film breaks due to friction.
- The service life becomes shorter.

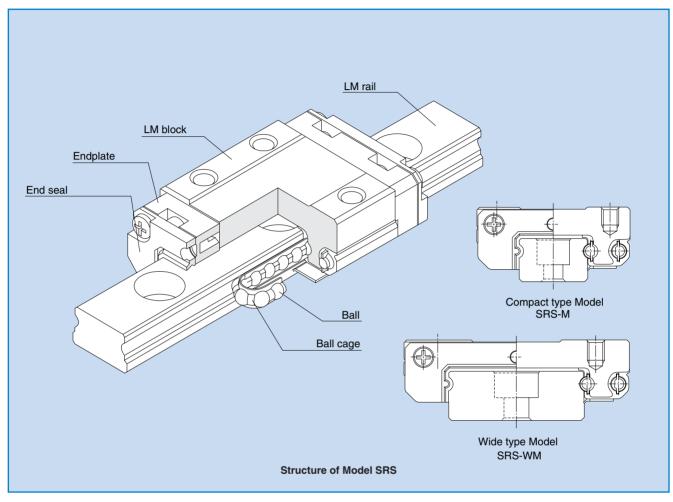

- ●The service life is prolonged due to the elimination of wear caused by friction between balls.
- The absence of friction between balls results in reduced heat
- generation during high-speed rotation.

 The absence of friction between balls eliminates collision noise of
- ◆The even spacing of the balls enables them to move smoothly.
 ◆Retention of lubricant in the ball cage ensures a long service life.


Caged Ball LM Guide

With the Caged Ball LM Guide, the use of a ball cage allows lines of evenly spaced balls to circulate, thus to eliminating friction between the balls.

In addition, grease held in a space between the ball circulation path and the ball cage (grease pocket) is applied on the contact surface between each ball and the ball cage as the ball rotates, forming an oil film on the ball surface. This minimizes the risk of oil-film


Oil-film contact

Conventional structure

Caged Ball structure

Lightweight, Compact Type Caged Ball LM Guide

Caged Ball LM Guide model SRS has a structure where two raceways are incorporated into the compact body, enabling the model to receive loads in all directions, and to be used in locations where a moment is applied with a single rail. In addition, use of ball cages eliminates friction between balls, thus achieving high speed, low noise, acceptable running sound, long service life, and long-term maintenance-free operation.

Low dust generation, anticorrosion

Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation. In addition, the LM block and LM rail use stainless steel, which is highly resistant to corrosion.

Compact

Since SRS has a compact structure where the rail cross section is designed to be low and that contains only two rows of balls, it can be installed in space-saving locations.

4-way equal load type

Since the right and left rows of balls under a load contact the raceway at 45°, this LM Guide is capable of receiving loads in the radial, reverse-radial and lateral directions at equal values and being used in any orientation. With this well-balanced structure, this model can be used in extensive applications.

Lightweight

Since part of the LM block (e.g., around the ball relief hole) is made of resin and formed through insert molding, SRS is a lightweight, low inertia type of LM Guide.

SRS Outline

Model SRS - Product Overview

The most compact type among the Caged Ball LM Guide series Lightweight, low-inertia structure

Model SRS-WM

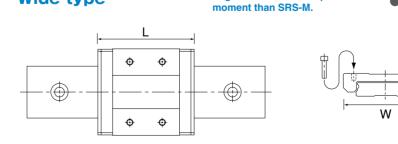
Wide type

Major applications Semiconductor manufacturing machine / optical stage / medical equipment / IC bonder, etc.

Note: Full-ball type (with no ball cage) for models SRS-M/WM is also available. If desiring the full-ball type, specify "SRS-G" type when making an order. However, since SRS-G type does not have a ball cage, its dynamic load rating is smaller than models SRS-M/WM.

Model SRS-M Standard type A standard type of SRS. SRS 7M SRS 15M SRS 20M SRS 20M SRS 25M

It has a longer overall LM block

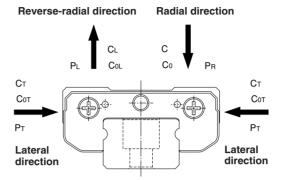

length (L), a greater width and a

larger rated load and permissible

●SRS 7WM ●SRS 15WM

OSRS 9WM

OSRS 12WM


Model SRS - Product Overview

Rated Loads in All Directions

Model SRS is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

Its basic dynamic load rating is represented by the symbol in the radial direction indicated in the figure on the right, and the actual value is provided in the dimensional table*1 for model SRS. The values in the reverse-radial and lateral directions are obtained from table 1.

*1:Dimensional table for model SRS

Model SRS-M
→ pages 9-10

Model SRS-MW

→ pages 11-12

Rated Loads of Model SRS in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse-radial direction	C _L =C	$C_{0L}=C_0$
Lateral direction 1 (7M/7WM)	C _T =1.13C	С₀т=1.19С₀
Lateral direction 2 (9M/9WM/20M)	C _T =1.19C	Сот=1.19Со
Lateral direction 3 (12M/12WM/15M/15WM/25M)	C _T =C	C _{OT} =C ₀

Equivalent Load

When the LM block of model SRS receives a radial load and a lateral load, or a reverse-radial load and a lateral load, simultaneously, the equivalent load is obtained from the equation below.

 $P_E = X \cdot P_R(P_L) + Y \cdot P_T$

where

·Lateral direction X, Y:Equivalent factor (see the table below)

Equivalent Factor of Model SRS

Equivalent load P _E	Model No.	X	Y
	7M/7MW/9M/9WM/ 20M	1	0.839
Radial and reverse-radial directions	12M/12WM/ 15M/ 15WM/25M	1	1
	7M/7MW/9M/9WM/ 20M	1.192	1
Lateral direction	12M/12WM/15M/15WM /25M	1	1

*1: Basic dynamic load rating (C)

It refers to a load with a constant magnitude and direction under which the rated life (L) of a group of identical LM Guide units independently operating is

Service life

The service life of an LM Guide is subject to variations even under the same operational conditions. Therefore, it is necessary to use the rated life defined below as a reference value for obtaining the service life of the LM Guide.

Rated life

The rated life means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like exfoliation on the metal surface) after individually running under the same conditions.

Service life time

Once the rated life (L) has been obtained, the service life time can be obtained using the equation on the right if the stroke length and the number of reciprocations are constant.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{c}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{c}}}\right)^{3} \times 50$$

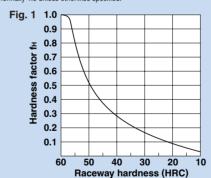
L : Rated life

C : Basic dynamic load rating*1 (N) Pc : Calculated load

f_H: Hardness factor (see Fig. 1) f_⊤ : Temperature factor (see Fig. 2) fc : Contact factor

(see Table 1) fw : Load factor (see Table 2)

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$


L_h: Service life time ℓ s : Stroke length (mm) n₁: No. of reciprocations per min (min⁻¹)

f_H: Hardness factor

To ensure the achievement of the optimum load capacity of the LM Guide, the raceway hardness must be between 58 and 64 HRC

At hardness below this range, the basic dynamic and static load ratings decrease. Therefore, the rating values must be multiplied by the respective hardness factors (f_H).
Since the LM Guide has sufficient hardness, the f_H value for the LM Guide

is normally 1.0 unless otherwise specified.

Ifc : Contact factor

When multiple LM blocks are used in close contact with each other, it is difficult to achieve uniform load distribution due to moment loads and mounting-surface accuracy. When using multiple blocks in close contact with each other, multiply the basic load rating (C or Co) by the corresponding contact factor indicated in Table 1.

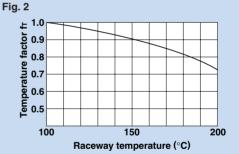

Note: When uneven load distribution is expe

Table 1 Contact Factor (fc)

Number of blocks used in close contact	Contact factor fc			
2	0.81			
3	0.72			
4	0.66			
5	0.61			
6 or more	0.6			
Normal use	1			

f_⊤: Temperature factor

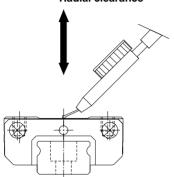
Since the service temperature of Caged Ball LM Guides is normally 80°C or below, the f_T value is 1.0.

■fw : Load factor

In general, reciprocating machines tend to produce vibrations or impact during operation. It is especially difficult to accurately determine all vibrations generated during high-speed operation and impacts produced each time the machine starts and stops. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table 2, which contains empirically obtains

Table 2 Load Factor (fw)

Vibration/impact	Speed (V)	fw
Faint	Very slow V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Moderate	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	Fast V>2m/s	2 to 3.5


Model SRS - Product Overview

Radial Clearance Standard

Since the radial clearance of an LM Guide greatly affects the running accuracy, load carrying capacity and rigidity of the LM Guide, it is important to select an appropriate clearance according to the application.

Radial clearance

In general, selecting a negative clearance (i.e., a preload*1 is applied) while taking into account possible vibrations and impact generated from reciprocating motion favorably affects the service life and the accuracy.

Unit: μ m

		Onit. μ ni
Indication symbol	Normal	Light preload
Model No.	No symbol	C1
7	−2 to +2	- 3 to 0
9	−2 to +2	- 4 to 0
12	−3 to +3	- 6 to 0
15	-5 to +5	-10 to 0
20	−5 to +5	-10 to 0
25	-7 to +7	-14 to 0

*1: Preload

Preload is an internal load applied to the rolling elements (balls) of an LM block in advance in order to increase its rigidity.

The clearance of all model SRS units is adjusted to the designated value before being shipped. Therefore, it is unnecessary to adjust the preload.

Accuracy Standard

The accuracy of model SRS is specified in terms of running parallelism (*1), dimensional tolerance for height and width, and height and width difference between a pair (*2.*3) when two or more LM blocks are used on one rail or when two or more rails are mounted on the same plane.

The accuracy of model SRS is classified into normal grade (no symbol), high grade (H) and precision grade (P) as indicated in the table below.

M	C	
-	A	B W ₂

Unit: mm

	Accuracy standard	Normal grade	High-accuracy grade	Precision grade		
Model No.	Item	No symbol	Н	Р		
	Dimensional tolerance for height M	± 0.04	± 0.02	± 0.01		
7	Difference in height M	0.03	0.015	0.007		
9	Dimensional tolerance for width W ₂	± 0.04	± 0.025	± 0.015		
12	Difference in width W2	0.03	0.02	0.01		
15	Running parallelism of	AC (adaw)			
20	surface C against surface A	ΔC (elow)			
25	Running parallelism of	ΔD (as shown in the figure below)				
	surface D against surface B	Δυ (Delow)			

LM Rail Length and Running Parallelism for Model SRS 25 20 15 10 20 100 200 300 400 500 600 LM rail length (mm)

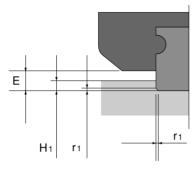
*1: Running parallelism

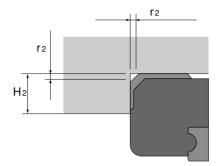
It refers to the parallelism error between the LM block and the LM rail datum plane when the LM block travels the whole length of the LM rail with the LM rail secured on the reference datum plane using bolts.

*2: Difference in height M

It indicates the difference between the minimum and maximum values of height (M) of each of the LM blocks used on the same plane in combination.

*3: Difference in width W₂


It indicates the difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.



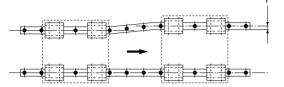
Shoulder Height of the Mounting Base and the Corner Radius

Normally, the mounting base for the LM rail and the LM block has a datum plane on the side face of the shoulder of the base in order to allow easy installation and highly accurate positioning.

The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius "r," to prevent interference with the chamfer of the LM rail or the LM block.

Shoulder for the LM rail

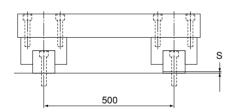
Shoulder for the LM block


Unit: mm

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	E
7 M	0.1	0.2	0.9	3.3	1.3
7 WM	0.1	0.1	1.4	3.8	1.8
9 M	0.1	0.3	0.5	4.9	0.9
9 WM	0.1	0.5	2.5	4.9	2.9
12 M	0.3	0.2	1.5	5.7	2
12 WM	0.3	0.3	2.5	5.7	3
15 M	0.3	0.4	2.2	6.5	2.7
15 WM	0.3	0.3	2.2	6.5	2.7
20 M	0.3	0.5	3	8.7	3.4
25 M	0.5	0.5	4.5	10.5	5

Error Allowance in the Parallelism Between Two Rails

The table shows error allowances in parallelism (P) between two rails that will not affect the service life in normal operation.



Unit: μ i						
Model No.	Gothic-arch groove					
woder no.	Clearance C1	Normal clearance				
7	_	3				
9	3	4				
12	5	9				
15	6	10				
20	8	13				
25	10	15				

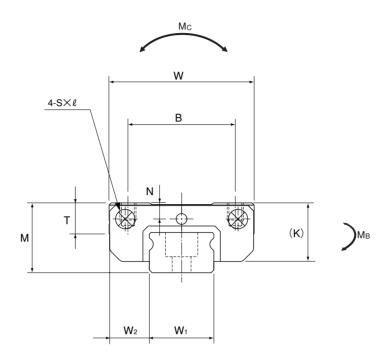
Error Allowance in Vertical Level Between Two Rails

The values in the table each indicate the error allowance in vertical level between two rails per 500 mm of the axis-to-axis distance, and are proportional to the axis-to-axis distance.

Unit. μ						
Model No.	Gothic-arch groove					
wodel No.	Clearance C1	Normal clearance				
7	_	25				
9	6	35				
12	12	50				
15	20	60				
20	30	70				
25	40	80				

I Inituum

Flatness of the LM Rail and the LM Block Mounting Surface


The values in the table apply when the clearance is a normal clearance. If the clearance is clearance C1 and two rails are used in combination, we recommend using 50% or less of the value in the table.

Since SRS has Gothic-arch grooves, any accuracy error in the mounting surface may negatively affect the operation. Therefore, we recommend using SRS on a highly accurate mounting surface.

	Unit: mm
Model No.	Flatness
7M	0.025/200
7WM	0.025/200
9M	0.035/200
9WM	0.035/200
12M	0.050/200
12WM	0.050/200
15M	0.060/200
15WM	0.060/200
20M	0.070/200
25M	0.070/200

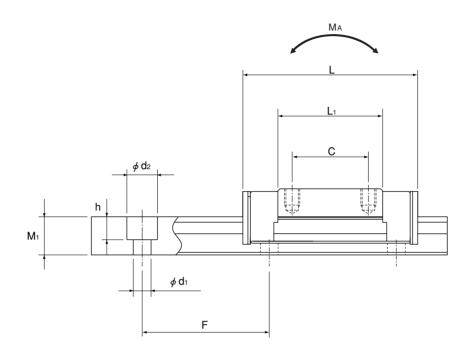
Model SRS-M

Dimensional Table for Model SRS-M

		Exte	External dimensions			LM block dimensions					
	Model No.	Height M	Width W	Length L	В	С	S× ℓ	L ₁	Т	К	N
•	SRS 7M	8	17	23.4	12	8	M2×2.3	13.4	3.3	6.7	1.6
	SRS 9M	10	20	30.8	15	10	M3×2.8	19.8	4.9	9.1	2.4
	SRS 12M	13	27	34.4	20	15	M3×3.2	20.6	5.7	11	3
	SRS 15M	16	32	43	25	20	M3×3.5	25.7	6.5	13.3	3
	SRS 20M	20	40	50	30	25	M4×6.0	34	9	16.6	4
	SRS 25M	25	48	77	35	35	M6×7.0	56	11	20	5

Note Since the LM block, LM rails, and balls are stainless steel, this model is highly resistant to corrosion and the environment.

Example of model number coding



No. of LM blocks used on the same rail 2Model number 3With QZ Lubricator 4Dust prevention accessory symbol (see page 15) Radial clearance symbol (see page 6) 6LM rail length (in mm) 2Accuracy symbol (see page 6) 8LM rail is made of stainless steel No. of rails used on the same plane

Note This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

Those models equipped with QZ Lubricator cannot have a grease nipple.

Unit: mm

	LM rail dimensions					Basic load static permissible moment N-m*			Mass				
Width		Height	Pitch		С	Co	N	Λ A	1	Мв	Mc	LM block	LM rail
W ₁	W ₂	M ₁	F	d₁×d₂×h	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
7 0 -0.02	5	4.7	15	2.4×4.2×2.3	1.51	1.29	3.09	_	3.69	_	5.02	0.009	0.25
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	2.69	2.31	7.82	43.9	9.03	50.8	10.6	0.016	0.32
12 0 -0.02	7.5	7.5	25	3.5×6×4.5	4	3.53	12	78.5	12	78.5	23.1	0.027	0.65
15 0 -0.02	8.5	9.5	40	3.5×6×4.5	6.66	5.7	26.2	154	26.2	154	40.4	0.047	0.96
20 0 -0.03	10	11	60	6×9.5×8	7.75	9.77	54.3	296	62.4	341	104	0.11	1.68
23 0 -0.03	12.5	15	60	7×11×9	16.5	20.2	177	932	177	932	248	0.24	2.6

Note If a grease nipple is required, indicate "with grease nipple" (available for models

SRS 15M/15WM/20M/25M).

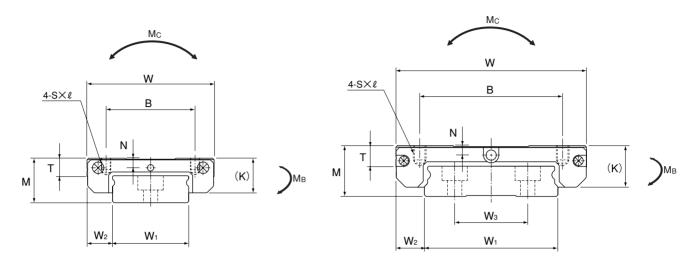
If a greasing hole is required, indicate "with greasing hole" (available for models SRS 7M/7WM/9M/9WM/12M/12WM).

Static permissible moment*:

1 block: static permissible moment value with 1 LM block 2 blocks: static permissible moment

value with 2 blocks closely contacting with each other

SRS-G Basic Load Ratings


	Basic load rating				
Model No.	C kN	C₀ kN			
	KIN	KIN			
SRS 9MG	2.07	2.32			
SRS 12MG	3.36	3.55			
SRS 15MG	5.59	5.72			
SRS 20MG	5.95	9.4			
SRS 25MG	13.3	22.3			

Note Full-ball type (with no ball cage) for model SRS-M is also available. If desiring the full-ball type, specify "SRS-G" type when making an order. However, since SRS-G type does not have a ball cage, its dynamic load rating is smaller than model SRS-M.

Model SRS-WM

Dimensional Table for Model SRS-WM

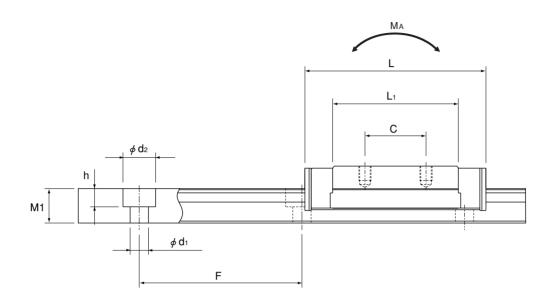
Models SRS7WM/9WM/12WM

Model SRS15WM

External dimensions					LM block dimensions						
Model N	No.	Height M	Width W	Length L	В	С	S× ℓ	L ₁	Т	К	N
SRS 7	WM	9	25	31	19	10	M3×2.8	20.4	3.8	7.2	1.8
SRS 9	WM	12	30	39	21	12	M3×2.8	27	4.9	9.1	2.3
SRS 12	WM	14	40	44.5	28	15	M3×3.5	30.9	5.7	11	3
SRS 15	WM	16	60	55.5	45	20	M4×4.5	38.9	6.5	13.3	3

Note Since the LM block, LM rails, and balls are stainless steel, this model is highly resistant to corrosion and the environment.

Example of model number coding



No. of LM blocks used on the same rail 2Model number 3With QZ Lubricator 4Dust prevention accessory symbol (see page 15) Radial clearance symbol (see page 6) 6LM rail length (in mm) 2Accuracy symbol (see page 6) 8LM rail is made of stainless steel No. of rails used on the same plane

This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

Those models equipped with QZ Lubricator cannot have a grease nipple.

Unit: mm

	LM rail dimensions					Basic load Static permissible moment N-m*			*	Mass				
Width			Height	Pitch		С	C _o	1	Ma	1	И в	Mc	LM block	LM rail
W ₁	W_2	W₃	M ₁	F	d₁×d₂×h	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	1 block	kg	kg/m
14 _0_0	5.5	_	5.2	30	3.5×6×3.2	2.01	1.94	6.47	_	7.71	_	14.33	0.018	0.56
18 _0	6	_	7.5	30	3.5×6×4.5	3.29	3.34	14	78.6	16.2	91	31.5	0.031	1.01
24 _0.02	8	_	8.5	40	4.5×8×4.5	5.48	5.3	26.4	143	26.4	143	66.5	0.055	1.52
42 0 -0.02	9	23	9.5	40	4.5×8×4.5	9.12	8.55	51.2	290	51.2	290	176	0.13	2.87

Note If a grease nipple is required, indicate "with grease nipple" (available for models SRS 15M/15WM/20M/25M).

If a greasing hole is required, indicate "with greasing hole" (available for models SRS 7M/7WM/9M/9WM/12M/12WM)

Static permissible moment*:

1 block: static permissible moment value with 1 LM block

2 blocks: static permissible moment

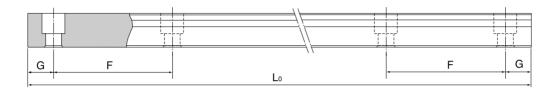
SRS-G Basic Load Ratings

	Basic load rating				
Model No.	С	C ₀			
	kN	kN			
SRS 9WMG	2.67	3.35			
SRS 12WMG	4.46	5.32			
SRS 15WMG	7.43	8.59			

value with 2 blocks closely contacting with each other

Note

Full-ball type (with no ball cage) for model specified the full-specified the full-s SRS-WM is also available. If desiring the fullball type, specify "SRS-G" type when making an order. However, since SRS-G type does not have a ball cage, its dynamic load rating is smaller than model SRS-WM.

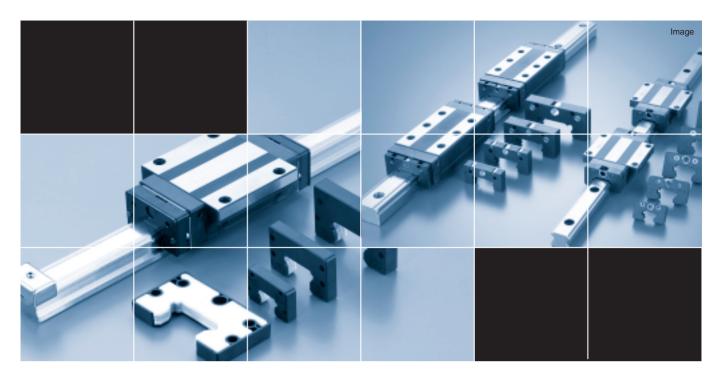


SRS-M/WM

Standard Length and Maximum Length of the LM Rail

The table below shows the standard LM rail lengths and the maximum lengths of model SRS variations. If the maximum length of the desired LM rail exceeds them, connected rails will be used. Contact THK for details.

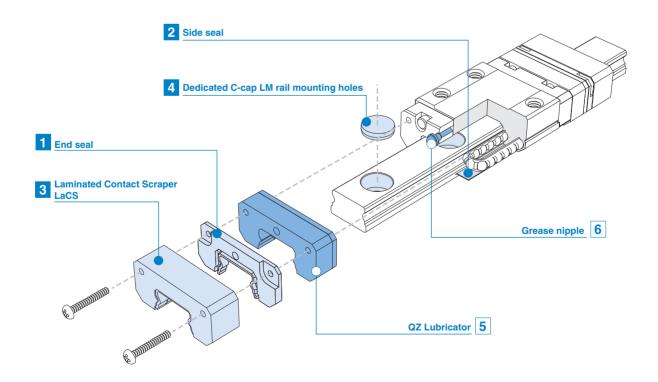
For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus adversely affecting accuracy.


Table Standard Length and Maximum Length of the LM Rail for Model SRS

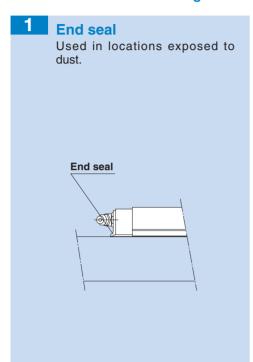
Unit: mm

										Offic. Hilli
Model No.	SRS	SRS	SRS	SRS	SRS	SRS	SRS	SRS	SRS	SRS
Woder 140.	7M	7WM	9M	9WM	12M	12WM	15M	15WM	20M	25M
	40	50	55	50	70	70	70	110	220	220
	55	80	75	80	95	110	110	150	280	280
	70	110	95	110	120	150	150	190	340	340
	85	140	115	140	145	190	190	230	460	460
L ₀)	100	170	135	170	170	230	230	270	640	640
igth (115	200	155	200	195	270	270	310	880	880
iil ler	130	260	175	260	220	310	310	430	1000	1000
M		290	195	290	245	390	350	550		
lard I			275	320	270	470	390	670		
Standard LM rail length (L _o)			375		320	550	430	790		
0,					370		470			
					470		550			
					570		670			
							870			
Standard pitch F	15	30	20	30	25	40	40	40	60	60
G	5	10	7.5	10	10	15	15	15	20	20
Max length	300	400	1000	1000	1340	1430	1800	1430	1800	1800

Note 1: The maximum length varies with accuracy grades. Contact THK for details.


Note 2: If connected rails are not allowed and a greater length than the maximum values above is required, contact THK $\ .$

SRS OPTIONS


Options

For model SRS, dust-prevention and lubrication accessories are available. Make a selection according to the application and the installation site.

Dust Prevention Accessories

When foreign matter enters an LM system, it will cause abnormal wear or shorten the service life. It is necessary to prevent foreign matter from entering the system. Therefore, when possible entrance of foreign matter is predicted, it is important to select an effective sealing device or dust-prevention device that meets the working conditions.

Seals and Scraper

1 2 Seals

Highly wear-resistant end seals made of special resin rubber and side seals for increased dust-prevention effect are available.

If desiring a dust-prevention accessory, specify it with the corresponding symbol indicated in table 3.

For the supported model numbers for dust-prevention accessories and the overall LM block length with a dust-prevention accessory attached (dimension L), see table 4.

Seal resistance value

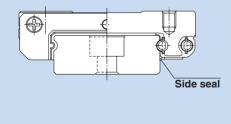

For the maximum seal resistance value per LM block when a lubricant is applied on seal SRS ··· SS, refer to the corresponding value provided in table 1.

Table 1 Maximum Seal Resistance Value of Seal SRS ··· SS Unit: N

Model No.	Seal resistance value
7M	0.08
7WM	0.12
9M	0.20
9WM	1.00
12M	0.60
12WM	1.30
15M	1.00
15WM	1.60
20M	1.30
25M	1.60

2 Side seal

Used in locations where dust may enter the LM block from the side or bottom surface, such as vertical, horizontal and inverted mount.

Scraper Laminated Contact Scraper LaCS_®

For locations with an even more adverse working conditions, the Laminated Contact Scraper LaCS is available.

LaCS removes minute foreign matter adhering to the LM rail in multiple stages and prevents it from entering the LM block with a laminated contact structure (3-layer scraper).

Features

- Since the 3 layers of scrapers fully contact the LM rail, LaCS is highly capable of removing minute foreign matter.
- Since it uses oil-impregnated, foam synthetic rubber with a self-lubricating function, low friction resistance is achieved.

Basic Specifications of LaCS

- 1) Service temperature range of LaCS: -20°C to +80°C
- ② Resistance of LaCS: indicated in table 2

Table 2 Resistance of LaCS

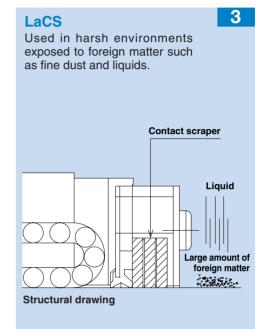
Unit: N

	01110111
Model No.	Resistance of LaCS
20M	5.2
25M	7.8

Note 1: Each resistance value in the table only consists of that of LaCS, and does not include sliding resistances of seals and other accessories.

Note 2: For the maximum service speed of LaCS, contact THK.

^{*}Note that LaCS is not sold alone


Table 3 Symbols of Dust Prevention Accessories for Model SRS

Symbol	Dust prevention accessory
UU	With end seal
SS	With end seal + side seal
SSHH	With end seal + side seal + LaCS

Table 4 Overall LM Block Length (Dimension L) of Model SRS with a Dust Prevention Accessory Attached

		•		
Model No.	None	UU	SS	SSHH
7M	21	23.4	23.4	_
7WM	28.6	31	31	_
9M	27.8	30.8	30.8	_
9WM	36	39	39	_
12M	31.4	34.4	34.4	_
12WM	41.5	44.5	44.5	_
15M	40	43	43	_
15WM	52.5	55.5	55.5	_
20M	47	50	50	67.2
25M	73	77	77	95.2

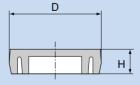
Note: "-" indicates not available.

4 Dedicated C-cap for LM Rail Mounting Holes

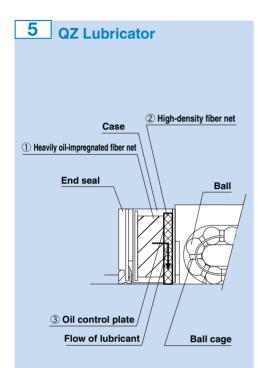
If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign matter, they may enter the LM block structure. Entrance of such foreign matter can be prevented by covering each LM rail mounting hole with the dedicated cap so that the top of the mounting holes are on the same level as the LM rail top face.

The dedicated C-cap for LM rail mounting holes is highly durable since it uses a special synthetic resin with high oil resistance and high wear resistance. When placing an order, specify the desired cap type with the

corresponding cap number indicated in the


table.

Model No.	C-cap	Bolt used	Major dimensions mm			
Model No.	model No.	Doit useu	D	Н		
9WM	C3	М3	6.3	1.2		
12M	C3	М3	6.3	1.2		
15M	C3	М3	6.3	1.2		
20M	C5	M5	9.8	2.4		
25M	C6	M6	11.4	2.7		


Dedicated C-cap

4

It prevents cutting chips from entering the LM rail mounting holes.

Lubrication Accessories

The structure of the QZ Lubricator consists of three major components:

- ① a heavy oil-impregnated fiber net (functions to store lubricant).
- ② a high-density fiber net (functions to apply lubricant to the raceway).
- ③ an oil-control plate (functions to adjust oil flow). The lubricant contained in the QZ Lubricator is fed by the capillary phenomenon, which is used also in felt pens and many other products, as the fundamental principle.

5 QZ Lubricator_{TM}

The QZ Lubricator feeds the right amount of lubricant to the ball raceway on the LM rail. This allows an oil film to continuously be formed between the balls and the raceway, and drastically extends the lubrication and maintenance intervals.

When the QZ Lubricator is required, specify the desired type with the corresponding symbol indicated in table 1.

For supported LM Guide model numbers for the QZ Lubricator and overall LM block length with the QZ Lubricator attached (dimension L), see table 2.

Features

- Supplements lost oil to drastically extend the lubrication/maintenance interval.
- Eco-friendly lubrication system that does not contaminate the surrounding area since it feeds the right amount of lubricant to the ball raceway.
- The user can select a type of lubricant that meets the intended use.

Significant Extension of the Maintenance Interval

Attaching the QZ Lubricator helps extend the maintenance interval throughout the whole load range from the light-load area to the heavy-load area.

Table 1 Parts Symbols for Model SRS with the QZ Lubricator Attached

Symbol	Dust prevention accessories for the LM Guide with the QZ Lubricator attached
QZUU	With end seal + QZ Lubricator
QZSS	With end seal + side seal + QZ Lubricator
QZSSHH	With end seal + side seal + LaCS + QZ Lubricator

Table 2 Overall LM Block Length (Dimension L) of Model SRS with the QZ
Lubricator Attached

Labilitator	7111401104	Offic. min	
Model No.	QZUU	QZSS	QZSSHH
7M	33.4	33.4	_
7WM	41	41	_
9M	40.8	40.8	_
9WM	49	49	_
12M	44.4	44.4	_
12WM	54.5	54.5	_
15M	55	55	_
15WM	67.5	67.5	_
20M	66	66	83.2
25M	97	97	115.2

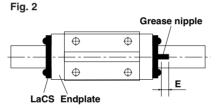
Note: "—" indicates not available

^{*}Note that the QZ Lubricator is not sold alone.

^{*}Those models equipped with the QZ Lubricator cannot have a grease nipple.

When desiring both the QZ Lubricator and a grease nipple to be attached, contact THK .

6 Grease Nipple


Model SRS does not have a grease nipple as standard. For the location for attaching the grease nipple, see Fig. 1. Installation of a grease nipple and the drilling of a greasing hole are performed at THK. When ordering SRS, indicate that the desired model requires a grease nipple or greasing hole (for greasing hole dimensions, supported LM Guide model numbers for grease nipples and incremental dimensions, see table 1).

Note 1: The grease nipple is not available for models SRS7M, SRS7WM, SRS9M, SRS9WM, SRS12M and SRS12WM. They can have a greasing hole.

Note 2: Using a greasing hole other than for greasing may cause damage.

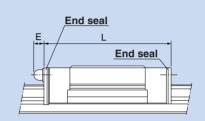
■When Dust Prevention Accessories SSHH are Attached

When dust prevention accessories SSHH are attached, the grease nipple can be mounted in the location indicated in Fig. 2. Table 2 shows incremental dimensions with the grease nipple.

Note: When desiring the mounting location for the grease nipple other than the one indicated in Fig. 2, contact THK.

When Dust Prevention Accessories UU or SS are Attached

For the incremental dimension of the grease nipple when dust prevention accessories UU or SS are attached, see table 1.


Table 2

	O					
Model No.		Incremental dimension with grease nipple	Nipple type			
	25M	4	PB1021B			

Grease nipple

6

Fig. 1

Note: For dimension L, see the corresponding dimension table.

Table 1 Table of Grease Nipple and Greasing Hole Dimensions

	Offile, Itiliti		
Model No.	E	Grease nipple or greasing hole	
7M	_	φ1.2 drilled hole	
7WM	_	ϕ 1.2 drilled hole	
9M	_	ϕ 1.5 drilled hole	
9WM	_	φ1.6 drilled hole	
12M	_	ϕ 2.0 drilled hole	
12WM	_	φ2.0 drilled hole	
15M	4.0 (5.0)	PB107	
15WM	4.0 (5.0)	PB107	
20M	3.5 (5.0)	PB107	
25M	4.0 (5.5)	PB1021B	

Note: Figures in the parentheses indicate dimensions without a seal.

TIHK Caged Ball LM Guide Model SRS

Precautions on use

Handling

- Disassembling components may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the
- Tilting an LM block or LM rail may cause them to fall by their own weight.
- Dropping or hitting the LM Guide may damage it. Giving an impact to the LM Guide could also cause damage to its function even if the guide looks intact.

Lubrication

- Thoroughly remove anti-corrosion oil and feed lubricant before using the product.
- · Do not mix lubricants of different physical properties.
- In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- When planning to use a special lubricant, contact THK before using it.
- · When adopting oil lubrication, the lubricant may not be distributed throughout the LM system depending on the mounting orientation of the system. Contact THK for details.
- Lubrication interval varies according to the service conditions. Contact THK for details.

Precautions on Use

- Entrance of foreign matter may cause damage to the ball circulating path or functional loss. Prevent foreign matter, such as dust or cutting chips, from entering the system.
- · When planning to use the LM system in an environment where coolant penetrates the LM block, it may cause trouble to product functions depending on the type of coolant. Contact THK for details.
- Do not use the LM system at temperature of 80°C or higher. When desiring to use the system at temperature of 80°C or higher, contact THK in advance.
- If foreign matter adheres to the LM system, replenish the lubricant after cleaning the product. For available types of detergent,
- · When using the LM Guide with an inverted mount, breakage of the endplate due to an accident or the like may cause balls to fall out and the LM block to come off from the LM rail and fall. In these cases, take preventive measures such as adding a safety mechanism for preventing such falls.
- · When using the LM system in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- · When removing the LM block from the LM rail and then replacing the block, an LM block mounting/removing jig that facilitates such installation is available. Contact THK for details.

Storage

· When storing the LM Guide, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

• "LM Guide," "Ball Cage," " 🧼 ," and "QZ" are registered trademarks of THK CO., LTD.

- The photo may differ slightly in appearance from the actual product.
- The appearance and specifications of the product are subject to change without notice. Contact THK before placing an order.
- Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.
- For the export of our products or technologies and for the sale for exports, THK in principle complies with the foreign exchange law and the Foreign Exchange and Foreign Trade Control Law as well as other relevant laws.

For export of THK products as single items, contact THK in advance.

All rights reserved

T H K CO., LTD.

HEAD OFFICE 3-11-6, NISHI-GOTANDA, SHINAGAWA-KU, TOKYO 141-8503 JAPAN ASIA PACIFIC SALES DEPARTMENT PHONE: (03) 5434-0351 FAX: (03) 5434-0353

NORTH AMERICA

CHICAGO

PHONE: (847)310-1111 FAX: (847)310-1182 NEW JERSEY

PHONE:(201)529-1950 FAX:(201)529-1962

PHONE:(770)840-7990 FAX:(770)840-7897 LOS ANGELES

PHONE:(714)891-6752 FAX:(714)894-9315 SAN FRANCISCO PHONE: (925) 455-8948 FAX: (925) 455-8965

BOSTON PHONE:(781)575-1151 FAX:(781)575-9295 DETROIT

PHONE: (248) 858-9330 FAX: (248) 858-9455 **TORONTO**

PHONE:(905)712-2922 FAX:(905)712-2925 **BRASIL** (SÃO PAULO)

PHONE: (011)3767-0100 FAX: (011)3767-0101

EUROPE

DÜSSELDORF

PHONE:0049-(0)2102-7425-0 FAX:0049-(0)2102-7425-299 STUTTGART

PHONE:0049-(0)7150-9199-0 FAX:0049-(0)7150-9199-888

PHONE:0049-(0)89-370616-0 FAX:0049-(0)89-370616-26

PHONE:0044-(0)1908-303050 FAX:0044-(0)1908-303070

MILANO PHONE:0039-039-2842079 FAX:0039-039-2842527

BOLOGNA PHONE:0039-051-6412211 FAX:0039-051-6412230 **SWEDEN**

PHONE:0046-(0)8-4457630 FAX:0046-(0)8-4457639

PHONE:0043-(0)7229-51400 FAX:0043-(0)7229-51400-79

PHONE:0034-93-652-5740 FAX:0034-93-652-5746 THK FRANCE S. A. S

PHONE:0033-(0)4-37491400 FAX:0033-(0)4-37491401 SOUTH AFRICA

PHONE:0027-(0)44-2720020 FAX:0027-(0)44-2720020

CHINA

THK SHANGHAI CO..LTD.

PHONE:(21)6334-5131 FAX:(21)6334-5137

PHONE:(10)6590-3259 FAX:(10)6590-3557 THK SHOUZAN CO.,LTD.

PHONE:2376-1091 FAX:2376-0749

TAIWAN

TAIPEI

PHONE:(02)2888-3818 FAX:(02)2888-3819

PHONE:(04)2359-1505 FAX:(04)2359-1506 SOUTHERN

PHONE:(06)289-7668 FAX:(06)289-7669 KOREA (SEOUL)

PHONE:(02)3468-4351 FAX:(02)3468-4353 MALAYSIA (KUALA LUMPUR)

PHONE:(03)9287-1137 FAX:(03)9287-8071 INDIA (BANGALORE)

PHONE: (080) 2330-1524 FAX: (080) 2330-1524

