

SNR/SNS Caged Ball LM Guide

Ultra-rigid LM Guide® for Machine Tools

- High speed performance
- Low noise design
- Reduction in rolling resistance variation
- Fitting measurements according to DIN 645
- Long-term maintenance-free operation
- Radius of curvature 51% Da

THK CO., LTD.

TOKYO, JAPAN

Catalog No. 234-7E

SNR/SNS

Ultra-rigid LM Guide with Caged Ball™ Technology

Fitting measurements also according to DIN 645

The fitting measurements of the types SNR-H and SNS-H meet the standard DIN 645. Therefore, these types are compatible with all standard roller as well as ball type linear motion guides. For very compact machine designs the extremely compact linear guides SNR and SNS are the best solutions.

Elimination of Ball-Friction with Caged Ball[™] technology

Typical point contact

Rotary ball bearing

In the first stage of development (Full ball type)

- Adjacent balls contact each other at a point. As a result, the contact stress is large and the oil film brakes down due to friction.
- The life becomes shorter.

Present bearing (With ball cage)

- The life is extended due to the absence of friction.
- Heat generation during high-speed rotation is limited due to the absence of the friction between adjacent balls.
- The balls do not contact each other. Noise does not arise from the metal to metal contact.
- Balls move smoothly because they are positioned evenly.
- The lubricating oil retained between the balls provdes excellent lubrication and long life.

At the time rotary ball bearings were invented, they had no ball cages. This resulted in loud noise during operation, a short running life, and did not have the ability to be run at high speeds.

20 years later, rotary ball bearings with ball cages were developed. This type was quieter in operation and capable of high rotational speeds. Although containing less balls, it provided exellent running life and contributed to the major success of rotary bearings.

The history of the needle bearing reveals how quality improved through the use of ball cages. Balls, at their

point of contact, slip against each other in opposite directions and at twice the speed of each of their rotation. This resulted in severe wear, loud noise, and a short running life. The massive pressure from the metal to metal contact and slip between the balls also caused the oil film to break down.

Alternatively, balls and ball cage contact each other over a large surface area and at half the relative velocity. This prevents the break down of oil and provides for quieter operation, higher rotational speeds, longer running life and extended maintenance. At $\square H \aleph$, we utilized our many years of experience along with innovative manufacturing techniques to develop the new Caged Ball[™] technology, and we have built this technology into the new generation of smooth-running LM guides. The main features of the new LM guides are as follows.

Low Noise - Favorable Sound Quality

Since the balls move in an orderly manner due to the presence of the ball cages, the metallic sound produced by collision between adjacent balls is eliminated, thereby resulting in low noise levels and favorable sound quality.

Long Service Life, Long-term Maintenance-free Operation

Adjacent balls, separated by the ball cage, do not rub against each other and produce friction. As a result, the balls are not subject to wear and tear. In addition, the grease retention has been enhanced, providing long service life, long-term maintenancefree operation.

Excellent High-speed performance

Caged Ball LM Guides exhibit excellent highspeed performance through reduced heat generation due to lower bearing stress and half the ball contact velocity. The life of the balls is also prolonged due to the elimination of the friction and wear between adjacent balls.

The grease circulates with the aid of a ball cage.

Figure 3 Grease pocket

Super Smooth Movement

Smooth movement with less variation of torque can be obtained as the balls are lined uniformly and circulated.

High bearing stress due to point contact

Noise level data

The types SNR/SNS have ball-circulating sections made of resin molded in the block. This structure eliminates metallic noise caused by balls contacting the block. The use of a ball cage has also eliminated metallic noise produced by balls hitting each other. Thus, types SNR/SNS operate quietly even at high speed. In addition, a ball cage is effective in preventing balls from rubbing against each other, resulting in low heat generation and a super high speed performance.

Less variation of rolling resistance

Types SNR/SNS are equipped with ball cage that uniformly arranges the balls. This enables the balls to move in a straight line without meandering when they enter the block. The balls can move smoothly regardless of the mounting position, decreasing the variation of rolling resistance and enabling a high degree of accuracy.

Special Quality of Type SNR and SNS

High rigidity

Types SNR/SNS are compact linear motion products based on the design of the LM Guide type NR, but with increased block rigidity. Since the radial rigidity, reverse radial rigidity, and lateral rigidity were all increased, types SNR/SNS have the highest rigidity in the Caged Ball series. The two types are available in the same dimensions: type SNR for the radial load type and type SNS for the four way equal load rating type. Either may be selected according to your application.

Improvement of damping effect

During rapid traverse movement, the LM Guide moves smoothly with almost no differential slip, and achieves high positioning accuracy. During heavy cutting and slow movement, the proper differential slip according to cutting load is generated. As a result, it increases frictional resistance and improves the damping effect (damping characteristics).

Ultra-heavy load specifications

The radius of curvature of the raceway is very similar to the ball radius so that the contact area, when subject to a load, is no less than the contact area of a roller type. This allows the new LM Guide to have a higher load carrying capacity than the roller type. They do not suffer a locking phenomenon due to the skewing of the rollers, which often occurs to the roller type.

Wide variety of options

Since various options such as the end seal, cover plate and bellows are available, the LM Guide can accomodate a variety of specifications.

Types and Features

Type SNR-R has a narrow block. Threads are tapped in the block. It is used when the installation space is limited. The fitting measurements are based on DIN 645.

The block of type SNR-C has flanges which are tapped from the top and counterbored from below. The fitting measurements are based on DIN 645.

Type SNR-LR has the same cross section as type SNR-R. With the increased number of balls, it is for handling ultra-heavy loads. The fitting measurements are based on DIN 645.

Type SNR-LC has the same cross section as type SNR-C. With the increased number of balls, it is for handling ultra-heavy loads. The fitting measurements are based on DIN 645.

Load Ratings and Life

Types SNR/SNS can support loads in the radial, reverse radial and lateral directions.

The basic load ratings listed in the dimension tables show the load ratings in the radial direction.

Life calculation

The following equation gives the life of types SNR/SNS.1)

$$L = \left(\frac{f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}}\right)^{3} \cdot 50$$

- L : Rated life (km) Die nominelle Lebensdauer L ist statistisch als die Gesamtlaufstrecke definiert, die 90% einer größeren Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.
- C : Basic dynamic load rating (N) (N)
- P_C: Design load
- f_T : Temperature factor
- f_C : Contact factor
- fw: Load factor

Given rated life(L) calculated by the above equation and assuming that the length of stroke and the reciprocating rate are constant, the life in terms of time can be calculated by using the following equation.

$$L_{h} = \frac{L \cdot 10^{3}}{2 \cdot \ell_{S} \cdot n_{1} \cdot 60}$$

- L_h: Life in terms of time (hr)
- ℓ_{S} : Stroke length
- n₁: Number of reciprocating motions per minute (min⁻¹)

Load Ratings in Various Directions

Load ratings

Types SNR/SNS can support loads in the radial, reverse radial and lateral directions. The basic load ratings listed in the dimension tables show the load ratings in the radial direction. The reverse radial and lateral load ratings are obtained from the table.

Figure 5 Load ratings in various directions

Table 1 Load ratings of types SNR/SNS in various directions

Direction	SN	١R	SNS		
	Basic dynamic load rating	Basic static load rating	Basic dynamic load rating	Basic static load rating	
Radial	С	C ₀	С	C ₀	
Reverse radial	C _L =0,64C	C _{0L} =0,64C ₀	C _L =0,84C	C _{0L} =0,84C ₀	
Lateral	C _T =0,47C	C _{0T} =0,38C ₀	C _T =0,84C	C _{0T} =0,84C ₀	

Equivalent load

(h)

(m)

When the LM block of type SNR is subjected to reverse radial and lateral loads simultaneously, the equivalent load can be calculated by using the following equation.

$$\mathsf{P}_{\mathsf{E}} = \mathsf{X} \cdot \mathsf{P}_{\mathsf{L}} + \mathsf{Y} \cdot \mathsf{P}_{\mathsf{T}}$$

P _E	:	Equivalent load	
		·Reverse radial ·Lateral	(N)
PL	:	Reverse radial load	(N)
Ρ _T	:	Lateral load((N)
V V		The stand of the stand	(T-1-1-0)

X, Y: Equivalent factors (Table 2)

Table 2 Equivalent factors of type SNR

	P _E	Х	Y
P _L /P _T ≥1	Reverse radial equivalent load	1	1,678
$P_L/P_T < 1$	Lateral equivalent load	0,596	1

When the LM block of type SNS is subjected to radial and lateral loads, reverse radial and lateral loads simultaneously, the equivalent load can be calculated by using the following equation.

X, Y : Equivalent factors (Table 3,4)

Table 3 Equivalent factors of type SNS

(in case of radial load and lateral load are applied)

	P _E	Х	Y
P _R /P _T ≥1	Radial equivalent load	1	0,935
$P_R/P_T < 1$	Lateral equivalent load	1,070	1

Table 4 Equivalent factors of type SNS

(in case of reverse radial load and lateral load are applied)

	P _E	Х	Y
P _L /P _T ≥1	Reverse radial equivalent load	1	1,020
$P_L/P_T < 1$	Lateral equivalent load	0,986	1

Radial Equivalent Load M.

Types SNR/SNS can take moment load in all three directions with only one LM block. Tables 5 and 6 list the values for the permissible moment load with one LM block in three directions.

Table 5 Static permissible moment of type SNR Unit: kNM

Model No.	M _A	M _B	M _C
SNR25	0,55	0,29	0,68
SNR25L	0,88	0,47	0,88
SNR30	0,83	0,44	1,01
SNR30L	1,39	0,74	1,32
SNR35	1,29	0,69	1,65
SNR35H	1,29	0,69	1,65
SNR35L	2,15	1,14	2,15
SNR35LH	2,15	1,14	2,15
SNR45	2,51	1,33	3,36
SNR45H	2,51	1,33	3,36
SNR45L	4,34	2,31	4,48
SNR45LH	4,34	2,31	4,48
SNR55	4,01	2,13	5,3
SNR55H	4,01	2,13	5,3
SNR55L	6,75	3,59	6,96
SNR55LH	6,75	3,59	6,96
SNR65	6,47	3,43	8,81
SNR65L	12,31	6,55	12,33

Table 6 Static permissible moment of type SNS Unit: kNM

Model No.	M _A	M _B	M _C
SNS25	0,51	0,49	0,65
SNS25L	0,83	0,79	0,84
SNS30	0,78	0,74	0,96
SNS30L	1,3	1,23	1,26
SNS35	1,21	1,15	1,56
SNS35H	1,21	1,15	1,56
SNS35L	2,01	1,92	2,05
SNS35LH	2,01	1,92	2,05
SNS45	2,35	2,23	3,21
SNS45H	2,35	2,23	3,21
SNS45L	4,07	3,88	4,28
SNS45LH	4,07	3,88	4,28
SNS55	3,75	3,57	4,96
SNS55H	3,75	3,57	4,96
SNS55L	6,33	6,02	6,51
SNS55LH	6,33	6,02	6,51
SNS65	6,06	5,76	8,24
SNS65L	11,56	10,99	11,54

Accuracy Standard

Tables 7 shows the accuracy of types SNR/SNS. Accuracy is defined by the running parallelism and tolerances of height and width. When two or more LM blocks are installed on one rail or when two or more rails are specified as matched sets, accuracy is defined by the differences in height and width of the individual LM blocks.

Running parallelism

For details, see General Catalog.

Difference in height M

For details, see General Catalog.

Difference in width W2

For details, see General Catalog.

The accuracy of types SNR/SNS is classified into normal, high, precision, super-precision and ultraprecision grades as shown in Table 7.

Figure 7 LM block surface

Model number	Accuracy grade	Normal	High	Precision	Super- precision	Ultra- precision		
	Item	Nosymbol	н	Р	SP	UP		
	Tolerance of height M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01		
SNR	Difference in height M	0,02	0,015	0,007	0,005	0,003		
SNS	Tolerance of width W2	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01		
30 35	Difference of width W2	0,03	0,015	0,007	0,005	0,003		
	Running parallelism of LM block surface CC with respect to surface A A		∆C (Re	efer to Fiç	gure 8)			
	Running parallelism of LM block surface DD with respect to surface BB		∆C (Re	efer to Fig	gure 8)			
	Item	Nosymbol	Н	Р	SP	UP		
	Tolerance of height M	0,1	0,05	0 ‴0,05	0 ‴0,03	0 ‴0,02		
	Difference in height M	0,03	0,015	0,007	0,005	0,003		
SNR SNS	Tolerance of width W2	0,1	0,05	0 ‴0,05	0 ‴0,03	0 ‴0,02		
45 55	Difference of width W2	0,03	0,02	0,01	0,007	0,005		
	Running parallelism of LM block surface CC with respect to surface A A	ΔC (Refer to Figure 8)						
	Running parallelism of LM block surface DD with respect to surface BB		∆C (Re	efer to Fiç	gure 8)			
	Item	Nosymbol	Н	Р	SP	UP		
	Tolerance of height M	0,1	0,07	0 0,07	0 0,05	0 0,03		
	Difference in height M	0,03	0,02	0,01	0,007	0,005		
SNR SNS	Tolerance of width W2	0,1	0,07	0 ‴0,07	0 ‴0,05	0 ‴0,03		
65	Difference of width W2	0,03	0,025	0,015	0,010	0,007		
	Running parallelism of LM block surface CC with respect to surface A A		∆C (Re	efer to Fig	gure 8)			
	Running parallelism of LM block surface DD with respect to surface BB	ΔC (Refer to Figure 8)						

Table 7 Accuracy standard

Figure 8 LM rail length and running parallelism

Preload

Table 8 lists the preload according to the radial clearance of the types SNR-H/SNS-H and SNR/SNS. Preloaded LM Guides generally have a negative radial clearance.

Figure 9 Measurement of the radial clearance

Table 8 Radial clearance of types SNR/SNS Unit: µm									
Symbol	Normal	Medium preload							
Model No.	—	C1	C0						
SNR/SNS25	0~-3	-3 ~- 6	- 6~- 9						
SNR/SNS30	0~-4	-4 ~- 8	- 8~-12						
SNR/SNS35	0~-4	-4 ~- 8	- 8~-12						
SNR/SNS45	0~-5	$-5 \sim -10$	-10~-15						
SNR/SNS55	0~-6	-6~-11	-11 ~-16						
SNR/SNS65	0~-8	$-8 \sim -14$	$-14 \sim -20$						

Table 8 Radial clearance of types SNR/SNS

Note 1:

No symbol is necessary for normal clearance. Add the corresponding symbols to the model number if C0 or C1 clearance is required. See the descriptions for the model number coding.

Model Number Coding

¹⁾The symbol "II" indicates the projected mounting design with two parallel LM rails.

Options

A variety of accessories are available for types SNR/SNS. These can be selected depending on the customer's specification.

1. Seal

End Seal

Types SNR/SNS are provided with end seals as a standard feature.

Double seals

Double seals for better contamination protection capability are available for types SNR/SNS.

Side seals

To prevent the contamination from under the LM block, side seals are available for types SNR/SNS.

Inner seals

Inner seals to be installed inside the block are available for types SNR/SNS.

Symbols for contamination protection system

When contamination protection is required, specify according to code shown.

The entire block length may vary depending on the type used. Add the increased dimensions (refer to Table 9) to the corresponding "L" value shown in the dimension tables.

LaCS (Laminated contact scrapers)

The surface-to-surface contact protects the rail from microscopic foreign matter far more effectively than conventional metal scrapers can. Siehe Katalog No. 247-G.

Metal scrapers

Metal scraper is used to remove relatively large or hard particles of foreign matter adhering to the LM rail.

Figure 16

Symbol	Symbol Protection system
UU	With end seal (on both ends)
SS	With end seals, side seals and inner seals
ZZ	With end seals, side seals, inner seals and metal scrapers
DD	With double seals, side seals and inner seals
KK	With double seals, side seals, inner seals and metal scrapers
ZZHH	With end seals, side seals, inner seals, metal scrapers and LaCS
ККНН	With double seals, side seals, inner seals, metal scrapers and LaCS

Table 9 Variation of the LM block length according to the mounted seals

Model No.	—	UU	SS	DD	ZZ	KK	ZZHH	ККНН
SNR/SNS25	—	_	—	7,4	6,2	13,8	22,5	30,5
SNR/SNS30	—	—	—	9,0	6,4	15,4	26,0	35,5
SNR/SNS35	—	—	—	10,2	7,6	17,8	28,0	38,0
SNR/SNS45	—	—	—	10,2	8,4	18,6	32,0	42,5
SNR/SNS55	—	—	—	10,0	8,4	18,6	32,5	42,5
SNR/SNS65	—	—	—	10,6	8,2	18,8	43,5	47,0

2. Plate Covers

Film-thin stainless steel (SUS304) plate covers are available for types SNR/SNS. The plate covers are essential contamination protection devices for machine tools. The plate cover is installed over the rail installation holes and improves the seal contact. It prevents the entry of coolant or machine chips into the block. This cannot be achieved by conventional means. The stopper is used to install the plate cover.

Installing the plate cover:

 Attach slide pieces to the cover plate. Place the cover plate between a slide piece and a fixing plate, with the slide piece chamfer facing out. Attach the fixing plate to the slide piece using countersunk head screws.

Fixing position

- 2. Remove the LM block from the LM rail. Mount the fixing jigs to both ends of the LM rail. Locate the positions of the fixing-jig mounting holes and attach the fixing jig using hexagon socket head cap screws.
- 3. Temporarily fix one slide piece. Insert one slide piece into the fixing jig. Install it at the end of the LM rail using a tension-adjustment bolt. Screw the bolt in until its head disappears into the fixing jig.
- 4. Temporarily fix the other slide piece. Perform the same steps to temporarily fix the other slide piece.
- Tighten the tension-adjustment bolts at both ends

5. Apply tension to the plate cover.

of the LM rail so that the tension is well balanced. At this time, care must be taken to ensure that there is no significant difference between the dimension H and the dimension H' illustrated in figure 21, as the tightening margin on one end of the LM rail may be eliminated.

 Insert the LM block into the LM rail. Locate the datum planes of the LM rail and the LM block, and insert the LM block into the LM rail through the use of the insertion jig.

Figure 21

- Note:
- 1. When removing or inserting an LM block, be extremely careful not to allow the balls to fall off.
 2. As the plate cover consists of ultra-thin stainless sheet steel (SUS304), be extremely careful when handling it. Never bend or otherwise deform it.
- 3. Plate covers are not available for both type SNR and type SNS 35 \sim 65.

3. Bellows

Bellows

Bellows may be installed where coolant or a similar substance is likely to enter.

Metal-telescopic cover

A telescopic cover can be installed over the bellows as shown in Figure 22.

Table 10 Dimension table for bellows

	Major dimensions												
Model number	W	H	H ₁	Р	b	t ₁	t ₂	t ₃	LM block mounting bolt S × length under head	LM block mounting bolt _{S1} × length under head	Т	A Lmax Lmin	Applicable models
JSN25	50	25,5	24,5	10	26,6	4,6	13	_	$M3 \times 5$	$M4 \times 4$	1,5	7	SNR/SNS25
JSN30	60	31	30	14	34	5,5	16,5	_	M4 imes 8	$M4 \times 4$	1,5	9	SNR/SNS30
JSN35	70	35	34	15	36	6	20	_	M4 imes 8	$M5 \times 4$	2	10	SNR/SNS35
JSN45	86	40,5	39,5	17	47	6,5	23,5	_	M5 imes 10	$M5 \times 4$	2	10	SNR/SNS45
JSN55	100	49	48	19,5	54	10	30,6	18	M5 imes 10	M5 × 4	2	13	SNR/SNS55
JSN65	126	60	59	22	64	13,5	36,1	20	$M6 \times 12$	$M6 \times 5$	3,2	13	SNR/SNS65

Figure 22 Example of installing bellows

Model Number Coding for Bellows

Bellows dimension Folded length Extended length Model number ... for SNR 25 Unit: mm

4. C Cap for LM Rail Mounting Hole

C cap

When chips or foreign materials enter the LM rail mounting holes of the LM Guide, they may enter the LM block. Contaminants can be prevented from entering the LM block by covering those LM rail mounting holes with special caps and ensuring that the caps are flush with the top surface of the LM rail. The special cap type C for LM rail mounting holes is made of a special synthetic resin with a high degree of oilproofing and wear resistance for excellent durability. Special caps for hexagon socket head set screws M5-M16 are kept in stock as standard equipment (Table 11). When it is necessary to order special caps, specify them using the nominal numbers in the dimension table.

To insert a special cap in a mounting hole, apply a flat metal piece to the cap, as shown in Figure 23, and then gently tap the metal until the cap becomes flush with the top of the LM rail.

|--|

Unit: mm

C cap		Main din	nensions	Applicable
type	Screw	D	Н	number
C 5	M 5	9,8	2,4	SNR/SNS25
C 6	M 6	11,4	2,7	SNR/SNS30
C 8	M 8	14,4	3,7	SNR/SNS35
C 12	M 12	20,5	4,7	SNR/SNS45
C 14	M 14	23,5	5,7	SNR/SNS55
C 16	M 16	26,5	5,7	SNR/SNS65

5. Special Insertion Jig

Types SNR/SNS have balls separated by the ball cage. This structure prevents the balls from dropping out when the block is removed from the rail. However, when the block is inserted onto the rail without being properly parallel to the raceway, the ball may drop out or the ball cage may be damaged. We recommend that the special THK insertion jig to be used.

(Always use a special insertion jig for parts to which a preload is applied.)

Figure 23

6. QZ Lubricator

THK has developed the QZ lubricator containing a fiber net (occluding element) with high oil content in order to meet the requirement for long-term maintenance-free technology in LM Guide lubrication.

Maintenance intervals can be greatly extended

Normally in LM systems, a (very) small amount of oil is lost as the machine runs. By mounting the QZ lubricator on the LM block, lost oil is automatically replaced, greatly extending maintenance intervals.

QZ lubricator is environmentally conscious

Because QZ lubricator uses a high-density fiber net to supply the appropriate amount of oil to the appropriate positions, there is no excess oil, making it an environmentally conscious design.

The best oil for each application can be used

QZ lubricator permits the use of the most suitable oil for LM Guide. QZ lubricator is available as a standard option for types SNR/SNS.

See THK Catalog No. 230-E for details.

Figure 25

Mounting Instruction

Shoulder height and bottom corner of installation surfaces

For installation, recommended shoulder height is listed in Table 12. Also, bottom corner of shoulder should have relief or radius less than r in table 12.

Figure 26

Table 12 Heights and radius of bottom corner

Unit: mm

	Radius of bottom	Shoulder height	Shoulder height	
Model number	corner	accommodating LM rail	accommodating LM block	
	r _(max.)	H ₁	H ₂	E
SNR/SNS25	0,5	5	5	5,5
SNR/SNS30	1,0	5	5	7
SNR/SNS35	1,0	6	6	9
SNR/SNS45	1,0	8	8	11,5
SNR/SNS55	1,5	10	10	14
SNR/SNS65	1,5	10	10	15

Seal Resistance

Regarding to types SNR/ SNS with "SS" seals (end seals and side seals on both ends), Table13 shows the values of maximum seal resistance for one LM block.

Table 13 Seal resistance

Unit: N

Model number	Seal resistance
SNR/SNS25	8
SNR/SNS30	14
SNR/SNS35	14
SNR/SNS45	16
SNR/SNS55	20
SNR/SNS65	25

Standard and Maximum Lengths of LM Rails

Table 14 lists the standard and maximum LM rail lengths of types SNR/SNS. If a rail longer than the corresponding maximum length is specified, the rail will be in two or more sections.

If a special length is required, G dimension listed in the table is recommended. If the G dimension is too long, it makes the rail ends insecure which may adversely affect accuracy. When two or more rails are to be connected, be sure to inform THK of the overall LM rail length.

The rails will be machined simultaneously in order to give precise joints.

Table 14 Standard and maximum LM rail lengths of types SNR/SNS Unit: m Model number SNR/SNS25 SNR/SNS30 SNR/SNS35 SNR/SNS45 SNR/SNS55 SNR/SNS65													
Model number	SNR/SNS25	SNR/SNS30	SNR/SNS35	SNR/SNS45	SNR/SNS55	SNR/SNS65							
Standard LM rail length (L ₀)	230 270 350 390 470 510 590 630 710 750 830 950 990 1070 1110 1230 1310 1350 1430 1470 1550 1590 1710 1830 1950 2070 2190 2310 2430 2470	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620							
F	40	80	80	105	120	150							
G	15	20	20	22,5	30	35							
Maximum length	2500	3000	3000	3090	3060	3000							

Table 14 Standard and maximum LM rail langths of types SND/SNS

Note: Maximum length differs depending on accuracy grades. If a single-piece LM rail exceeding the corresponding maximum length listed in Table 14 is desired, please contact TTHK.

TypeSNR/SNS-RH(Heavy load type)TypeSNR/SNS-LRH(Ultra heavy load type)

Compact LM block with fitting measurement according to DIN 645

		Main					LM	block	dimensi	ons						
Model number 1)	dir	nensic	ons													
	Height	Width	Length													
			L ₁	Т	К	Ν	N ₁	Е	E ₁	d ₀						
SNR/SNS35RH	55	70	109,5	50	50	M9 v 10	79	10	46	10	10	0	6	5.0		
SNR/SNS35LRH	55	10	135	50	72	10/0 / 12	104,5	12	40	19	19	9	0	5,2		
SNR/SNS45RH	70	86	138,2	60	60	$M10 \times 17$	105	15	59 /	20	26	1/	9.5	5.2		
SNR/SNS45LRH	70	00	171	00	80		137,8	15	50,4	20	20	14	0,0	5,2		
SNR/SNS55RH	80	100	163,3	75	75	M10 V 19	123,6	10	66	20	07	12	10	5.0		
SNR/SNS55LRH	00	100	200,5	75	95	10112 × 10	160,8),8		20	21	13	10	5,2		

¹⁾ See page 11 for the model number coding.

²⁾ See page 19 for the standard LM rail lengths.

 $^{\scriptscriptstyle 3)}$ See page 9 for static permissible moment $\rm M_A,~M_B~und~M_C.$

		LN	A rail dim	ensions ²⁾	I Contraction of the second	B	lasic loa	3)	Mass			
						SNR	SNS	SNR	SNS			
	Width		Height	Pitch		С	С	C ₀	C ₀	LM block	LM rail	
Grease fitting	W _{1 -0,05}	W ₂	M ₁	F	d×D×h	[kN]	[kN]	[kN]	[kN]	[kg]	[kg/m]	
B_M6E	34	18	24.5	80	$0 \times 14 \times 12$	89,7	68,7	144	110	1,5	62	
D-WO	54	10	24,5	00	3~14~12	108	82,7	188	144	2,0	0,2	
	45	20.5	20	105	$14 \times 20 \times 17$	132	101	216	167	3,2	0.8	
D-F11/0	43	20,5	29	105	14 \ 20 \ 17	161	123	288	222	4,1	9,0	
P DT1/2	52	22.5	26.5	120	16 × 23 × 20	177	136	292	225	4,7	14.5	
B—F11/0	55	20,0	30,5	120	10 ~ 23 ~ 20	214	164	383	295	6,2	14,5	

Type SNR/SNS-CH(Heavy load type)Type SNR/SNR-LCH(Ultra heavy load type)

Flange LM block with fitting measurement according to DIN 645

		Main			LM block dimensions											
	dir	nensic	ns													
Nodel number "	Height	Width	Length													
	М	W	L	В	С	S	н	L ₁	Т	T ₁	К	Ν	N ₁	Е	E ₁	d ₀
SNR/SNS35CH	10	100	109,5	<u>0</u> 2	62	M10	9.5	79	16	20	20	10	10	0	6	5.2
SNR/SNS35LCH	40	100	135	02	62	IVITU	/110 0,5	104,5	10	20	39	12	12	9	0	5,2
SNR/SNS45CH	60	100	138,2	100	80	M10	10.5	105	20	22	10 1	10	16	14	0 5	5.0
SNR/SNS45LCH	00	120	171	100	80	10112	10,5	137,8	20	22	40,4	10	10	14	0,5	5,2
SNR/SNS55CH	70	140	163,3	116	95	N114	10 5	123,6	22	24	56	10	17	10	10	<u>ج م</u>
SNR/SNS55LCH	70 140	200,5	116	95	11/14	14 12,5	160,8	22	22 24	1 56	10	17	13	10	5,2	

¹⁾ See page 11 for the model number coding.

²⁾ See page 19 for the standard LM rail lengths.

 $^{\scriptscriptstyle 3)}$ See page 9 for static permissible moment $\rm M_A,\, M_B$ und $\rm M_C.$

		LN	A rail dim	ensions ²⁾	I Contraction of the second	B	asic loa	3)	Mass		
						SNR	SNS	SNR	SNS		
	Width		Height	Pitch		С	С	C ₀	C ₀	LM block	LM rail
Grease fitting	W _{1 -0,05}	W ₂	M ₁	F	d×D×h	[kN]	[kN]	[kN]	[kN]	[kg]	[kg/m]
B_M6E	34	33	24.5	80	80 0×14×12		68,7	144	110	1,7	6.2
D-WO	54	00	24,5	00	3~14~12	108	82,7	188	144	2,2	0,2
	45	27.5	20	105	14 ~ 20 ~ 17	132	101	216	167	3,0	0.8
D-F11/0	43	57,5	29	105	14 \ 20 \ 17	161	123	288	222	4,2	9,0
	53	12 5	26.5	120	16 \ 22 \ 20	177	136	292	225	4,4	145
D11/0	55	43,5	50,5	120	10~23~20	214	164	383	295	6,5	14,5

Type SNR/SNS-R(Heavy load type)Type SNR/SNS-LR(Ultra heavy load type)

Compact LM block

SNR/SNS-R

		Main					LM	block	dimensi	ons				
Model number 1)	dir	nensio	ns											
	Height	Width	Length											
	М	W	L	В	С	$S \times \ell$	L ₁	Т	К	Ν	N ₁	Е	E ₁	d ₀
SNR/SNS25R	01	50	83	20	35	Meve	62,4	10	05 E	7	6	10	4	2.0
SNR/SNS25LR	51	50	102	32	25		81,6	10	25,5	'	0	10		3,9
SNR/SNS30R	20	60	98	40	40	M0 × 10	72,1	10	01	7	7	10	<u>c</u> e	2.0
SNR/SNS30LR	30	60	120,5	40	30	IVIO × 10	94,6	10	31	1	1	10	0,0	5,9
SNR/SNS35R	4.4	70	109,5	50	50	M9 v 10	79	10	25	0	0	0	6	5.0
SNR/SNS35LR	44	70	135	50	36	10 × 12	104,5	12	30	0	0	9	0	5,2
SNR/SNS45R	50	96	138,2	60	60	M10×17	105	15	40.4	10	0	- 1	0 5	5.0
SNR/SNS45LR	52	00	171	00	40	WITU × 17	137,8	15	40,4	10	0	14	0,0	5,2
SNR/SNS55R	60	100	163,3	6E	75	M10 × 10	123,6	10	40	4.4	10	10	10	E 0
SNR/SNS55LR	03	100	200,5	60	47,5	IVI I Z × I O	160,8	10	49	11	10	13	10	5,2
SNR/SNS65R	75	106	186	76	70	M16 × 20	143,6	22	60	16	15	10.5	0	0 0
SNR/SNS65LR	15	120	246	10	55	IVI 10 × 20	203,6	22	60	10	15	13,5	Э	0,2

 $^{\mbox{\tiny 1)}}$ See page 11 for the model number coding.

²⁾ See page 19 for the standard LM rail lengths.

 $^{\rm 3)}$ See page 9 for static permissible moment $\rm M_{A},\, \rm M_{B}$ und $\rm M_{C}.$

SNR/SNS-LR

LM rail dimensions 2) Basic load rating ³⁾ Mass SNR SNS SNR SNS Width Height Pitch С С LM block LM rail C_0 C_0 W₁ ⁰_{-0,05} Grease fitting W_2 M_1 F [kN] [kN] [kN] [kN] [kg] [kg/m] $d \times D \times h$ 48,3 37,0 79 61 0,4 B-M6F 25 12,5 17 $6 \times 9,5 \times 8,5$ 40 3,1 57,1 43,7 101 78 0.6 68,0 52,1 106 81 0,7 B-M6F 28 16 21 80 $7 \times 11 \times 9$ 4,4 106 81,1 62,1 138 0,9 89,7 68,7 144 110 1,0 B-M6F 34 18 24,5 80 $9 \times 14 \times 12$ 6,2 1,4 108 82,7 188 144 132 101 216 167 1,9 B-PT1/8 45 20,5 29 105 $14 \times 20 \times 17$ 9,8 161 123 288 222 2,4 177 136 292 225 3,1 B-PT1/8 53 23,5 36,5 120 $16 \times 23 \times 20$ 14,5 383 214 164 295 4,0 260 199 409 315 5,6 B-PT1/8 63 31,5 43 150 $18 \times 26 \times 22$ 20,5 340 260 572 441 8,0

3D CAD at www.thk.de

Type SNR/SNS-C(Heavy load type)Type SNR/SNR-LC(Ultra heavy load type)

Flange LM block

SNR/SNS-C

		Main						LM	block	(dime	ensions	;				
Model number 1)	dir	nensio	ns													
	Height	Width	Length													
	М	W	L	В	С	S	Н	L ₁	Т	T ₁	К	Ν	N ₁	Е	E ₁	d ₀
SNR/SNS25C	21	70	84	50	45	M O	60	62,4	10	16	05 F	7	6	10	4	2.0
SNR/SNS25LC	51	12	103	59	22,5	IVI O	0,0	81,6	12	10	25,5	'	0	10	4	3,9
SNR/SNS30C	20	00	98	70	52	M10	0 5	72,1	14	10	01	7	7	10	6.5	2.0
SNR/SNS30LC	30	90	120,5	12	26	WITU	0,5	94,6	14	10	51	'		10	0,5	3,9
SNR/SNS35C	11	100	109,5	00	62	M10	0 5	79	16	20	25	0	0	0	6	<u>ج م</u>
SNR/SNS35LC	44	100	135	02	31	WITU	0,5	104,5	10	20	35	0	0	9	0	5,2
SNR/SNS45C	50	100	138,2	100	80	M10	10.5	105	20	22	40.4	10	0	- 1	0 5	E 0
SNR/SNS45LC	52	120	171	100	40	IVIIZ	10,5	137,8	20	22	40,4	10	0	14	0,5	5,2
SNR/SNS55C	62	140	163,3	116	95	N11 /	10 5	123,6	22	24	10	44	10	10	10	<u>ج م</u>
SNR/SNS55LC	03	140	200,5	110	47,5	1114	12,5	160,8	22	24	49	11	10	13	10	5,2
SNR/SNS65C	75	170	186	1/10	110	M16	145	143,6	25	20	60	16	15	12.5	0	8.0
SNR/SNS65LC	75	170	246	142	55	IVI I O	14,5	203,6	20	20	00	10	15	13,5	ອ	0,2

 $^{\mbox{\tiny 1)}}$ See page 11 for the model number coding.

²⁾ See page 19 for the standard LM rail lengths.

 $^{\rm 3)}$ See page 9 for static permissible moment $\rm M_{A},\, \rm M_{B}$ und $\rm M_{C}.$

SNR/SNS-LC

LM rail dimensions 2) Basic load rating ³⁾ Mass SNR SNS SNR SNS Width Height Pitch С С C_0 C_0 LM block LM rail W₁ ⁰_{-0,05} Grease fitting W_2 M_1 F [kN] [kN] [kN] [kN] [kg] [kg/m] $d \times D \times h$ 48,3 37,0 79 61 0,6 3,1 B-M6F 25 23,5 17 $6 \times 9,5 \times 8,5$ 40 57,1 43,7 101 78 0.8 68,0 52,1 106 81 1,0 B-M6F 28 31 21 80 $7 \times 11 \times 9$ 4,4 106 81,1 62,1 138 1,3 89,7 68,7 144 110 1,5 B-M6F 34 33 24,5 80 $9 \times 14 \times 12$ 6,2 108 82,7 188 144 2,0 132 101 216 167 2,3 B-PT1/8 45 37,5 29 105 $14 \times 20 \times 17$ 9,8 161 123 288 222 3,4 177 136 292 225 3,6 B-PT1/8 53 43,5 36,5 120 $16 \times 23 \times 20$ 14,5 383 5,5 214 164 295 7,4 260 199 409 315 20,5 B-PT1/8 63 53,5 43 150 $18 \times 26 \times 22$ 340 260 572 441 10,5

3D CAD at www.thk.de

• Precautions in handling the LM block

The LM block includes precision mold resin. When it is dropped or struck, it may be damaged. Please take great care in handling the LM block. • Using holes on the sides of the LM block for lubrication nipples

When it is necessary to use holes on the sides of the LM block for attachment of lubrication nipples, please contact THK . THK will install nipples on the LM block. (Holes are not made all the way through to prevent foreign materials from entering.) These holes are for lubrication nipples only. Use of these holes for other purpose may break end plate.

Reinstalling the LM block

When the LM block is removed from the LM rail and then reinstalled, please insert it very carefully and correctly.

**For reinstallation, we recommend that a special insertion jig is to be used. Please contact THK upon the use of jig.

Coolant

When the LM block is used in an environment in which some coolant may enter the LM block, some types of coolant may adversely affect the functions of the LM block. Please contact THK when selecting a coolant.

Operating temperature range

The LM block is made from special resin. Do not use it above 80°C.

Sweden

THK Sweden

Saldovägen 2

17562 Järfälla

www.thk.se

THK GmbH

Tel. (8) 44 57 63 0

Fax (8) 44 57 63 9

info.sto@thk.se

Germany

Düsseldorf Office

40878 Ratingen Tel. (0 21 02) 74 25-0

info.dus@thk.de

Stuttgart Office

info.str@thk.de

Munich Office

Heinrich-Lanz-Str. 3

Tel. (0 71 50) 91 99-0

Fax (0 71 50) 91 99-8 88

85716 Unterschleißheim

Tel. (0 89) 37 06 16-0

Fax (0 89) 37 06 16-26

info.muc@thk.de

Spain

THK Spain

C/Andorra 19 A

08830 Barcelona

Sant boi de Llobregat

Tel. (93) 6 52 57 40

Fax (93) 6 52 57 46

info.bcn@thk.de

www.thk.de

European Headquarters

Hubert-Wollenberg-Str. 15

Fax (0 21 02) 74 25-29 9

Lubrication

Ordinary grease may not be utilized when the system is used in a special environment such as an area subject to extremes of temperature or continuous vibration, a clean room, or a vacuum environment. If the system is to be used in a special environment, please contact THK.

Sales Offices

U.K.

THK U.K.

26 Alston Drive Bradwell Abbey Milton Keynes, MK13 9HA Tel. (0 19 08) 22 21 59 Fax (0 19 08) 22 21 61 www.thk.co.uk info.mks@thk.co.uk

Switzerland

Bachofen-AG Ackerstraße 42 8610 Uster Tel. (01) 9 44 11 11 Fax (01) 9 44 12 33 www.bachofen.ch info@bachofen.ch

France

THK France Parc des Bruveres 58, Chemin de la Bruyere 69570 Dardilly Tel. (04) 37 49 14 00 Fax (04) 37 49 14 01 www.thk.fr info.lys@thk-france.fr

Austria

THK Austria Edelmüllerstraße 2 4061 Pasching Tel. (0 72 29) 51 40-0 Fax (0 72 29) 51 40-0 79 www.thk.at info.lnz@thk.at

Italy

THK Italy Via Buonarroti, 182 20052 Monza (MI) Tel. (0 39) 2 84 20 79 Fax (0 39) 2 84 25 27 www.thk-italia.it info.mil@thk-italia.it

THK Bologna

Via della Salute 16/2 40132 Bologna Tel. (0 51) 6 41 22 11 Fax (0 51) 6 41 22 30 info.blg@thk-italia.it

USA

THK Atlanta 6135-E Northbelt Drive Norcross, GA. 30071 Tel. (770) 840-7990 Fax (7 70) 8 40-78 97 atlanta@thk.com

THK Chicago

200 East Commerce Drive Schaumburg, IL. 60173 Tel. (8 47) 3 10-11 11 Fax (8 47) 3 10-12 71 www.thk.com chicago@thk.com

THK Detroit 4190 Telegraph Rd. Suite 2500 Bloomfield Hill, Ml. 48302 Tel. (2 48) 5 94-75 52 Fax (2 48) 5 94-75 58

THK Los Angeles 70825 Korntal-Münchingen

6000 Phyllis Drive Cypress, CA. 90630 Tel. (7 14) 8 91-67 52 Fax (7 14) 8 94-93 15 losangeles@thk.com

Max-Planck-Straße 13

THK New Jersey 300 F, RT.17, South Mahwah, NJ. 07430 Tel. (201) 529-1950 Fax (201) 529-1962 newjersey@thk.com

THK San Francisco

290 Lindbergh Avenue Livermore, CA. 94550 Tel. (9 25) 4 55-89 48 Fax (9 25) 4 55-89 65 sanfrancisco@thk.com

Canada

THK Canada 130 Matheson Blvd. E., U. 1 Mississauga, Ontario Canada L4Z 1Y6 Tel. (9 05) 7 12-29 22 Fax (9 05) 7 12-29 25 canada@thk.de

Brasil

THK Brasil Ltda. Rua Dr. Artur Zapponi, 57 Frequesia do Ó São Paulo - SP Tel. (55-11) 39 24-09 11 Fax (55-11) 39 24-09 00 thk@thk.com.br www.thk.com.br

China

THK Beijing Kunlun Hotel Room No.526 2 Xin Yuan Lu Chaoyang District Beijing Tel. (10) 65 90-35 57 Fax (10) 65 90-35 57

Hongkong

THK Shouzan Co., Ltd. 4/Fl., Hanyee Bldg., Flat C 19-21 Hankow Road Tsimshatsui, Kowloon Tel. (8 52) 37 61 09 1 Fax (8 52) 37 60 74 9

India

THK India 1050,11th Main r.p.c. Layout Bangalore 560040 Tel. (0 80) 3 30-15 24 Fax (0 80) 3 30-15 24

thk@satyam.net.in Malaysia

THK Malaysia 19-12-1, Mont Kiara Palma Jalan Mont Kiara, Off Jalan Bukit Kiara 50480 Kuala Lumpur Tel. (03) 2 54-70 07 Fax (03) 2 54-70 07

Taiwan

THK Taiwan C611 SHIH, 6F, No. 7 Wu-Chuan 1 Rd. Wu-Ku Kung Yeh Chu Hsin Chuang City Taipei Hsien Tel. (02) 22 96-49 90 Fax (02) 22 97-81 49

Specifications are subject to change without notice. 06/2003 Printed in Belgium

Plants

Europe

THK Manufacturing of Europe, S.A.S. Parc d' Activités la Passerelle 68190 Ensisheim

Tel. (03) 89 83 44 00 Fax (03) 89 83 44 09

PGM Ball Screws Ltd. Bodmin Road, Wyken

Coventry CV2 5DZ Tel. (0 24) 76 84-19 00 Fax (024) 76 61-10 32

PGM Ireland Ltd.

18 Cookstown Industrial Estate Tallaght, Dublin 24 Tel. (01) 4 62-81 01 Fax (01) 4 62-90 80

USA

THK Manufacturing of America, Inc. 471 North High Street Hebron, OH. 43025 Tel. (7 40) 9 28-14 15 Fax (7 40) 9 28-14 18

Japan

Head Office: 3-11-6 Nishi-Gotanda Shinagawa-Ku Tokyo 141 Tel. (03) 54 34-03 41 Fax (03) 54 34-03 45 www.thk.co.jp thk001@thk.co.jp

Werke in:

Kofu, Yamaguchi, Yamagata, Mie, Tokyo, Nagoya, Osaka, Gifu, etc