

Compact Rotary Actuator Rack & Pinion Style/Size: 10, 15, 20, 30, 40

360° Rotation type has been added.

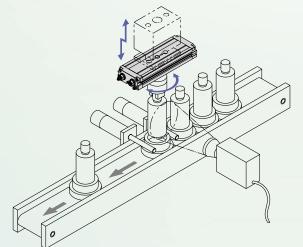
Compact Rotary Actuator

Rack & Pinion Style/Size: 10, 15, 20, 30, 40

Built-in cushion 10, 15 : Rubber bumper 20, 30, 40 : Air cushion Rotary actuator body serves as a flange.

360°

Equipped with an angle adjusting mechanism (±5°)


Piping can be installed from one end.

> Double piston style Compact, with no backlash

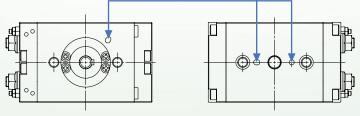
Both single shaft and double shaft are available in all sizes.

360° type application example

Complete external inspection of a work piece

Series CRQ2

360° type has been


added to the series.

2 auto switches are mountable on the same side. (Mountable on the both sides.)

Mounting smaller auto switches prevents the auto switch from protruding above the body surface and realises space-savings.

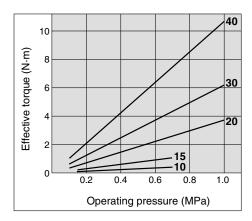
Centering is easy when mounting the main body.

Pin holes for positioning the main body

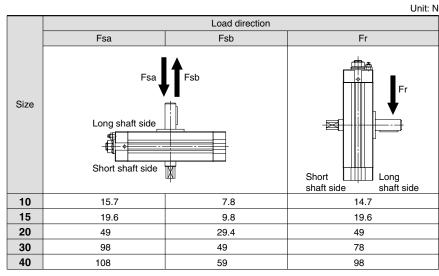
Series	Size	Shaft	Rotation	Cushion		
Selles	Size	type	Rotation	Rubber	Air	
	10				—	
	15	• Single	• 80° to 100°		_	
CRQ2	20	• Double	• 170° to 190°	_		
	30	Double	• 350° to 370°	_		
	40			_		

SMC

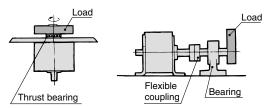
Series CRQ2 Model Selection


election Procedure Operating conditions	Formula	Selection Example
Operating conditions are as follows:	 Model used Operating pressure Mounting position Load type Static load: Ts (N-m) Resistance load: Tf (N-m) Inertial load: Ta (N-m) Load configuration Rotation time t (s) Rotation θ (rad) Load mass m (kg) Distance between central axis and centre of gravity H (m) 	Rotary actuator: CDRQ2BS40-90, Pressure: 0.5 MPa Mounting position: Vertical, Type of load: Inertial load Ta Load configuration: 0.1 m x 0.06 m (Rectangular plate) Rotation time (t): 0.3 s, Rotation: $\frac{\pi}{2}$ rad (90°) Load mass (m): 0.4 kg Distance between central axis and centre of gravity (H): 0.04 m
Required torque Confirm the type of load as shown below, and select an actuator that satisfies the required torque. • Static load: Ts • Resistance load: Tf Load type • Inertial load: Ta	Effective torque ≥ Ts Effective torque ≥ (3 to 5) x Tf Effective torque ≥ 10 x Ta Effective torque	Inertial load 10 x Ta = 10 x I x $\dot{\Omega}$ = 10 x 0.00109 x (2 x (π /2)/0.3 ²) = 0.380 N·m < Effective torque OK Note) I is obtained by substituting the value of inertia momen
Rotation time		
Confirm that it is within the adjustable range of rotation time.	0.2 to 1.0 s/90°	0.3 s/90° OK
Allowable loads		
Confirm that the radial load, thrust load, and moment are within the allowable ranges.	Thrust load: m x 9.8 ≤ Allowable load Allowable load	0.4 x 9.8 = 3.92 N < Allowable load OK
Moment of inertia		
Find the load's moment of inertia "I" for the energy calculation.	I = m x (a² + b²)/12 + m x H² Moment of inertia	I = 0.4 x (0.10 ² + 0.06 ²)/12 + 0.4 x 0.04 ² = 0.00109 kg⋅m ²
Kinetic energy		
Confirm that the load's kinetic energy is within the allowable value.	$\begin{split} 1/2 \times I \times & \Omega^2 \leq \text{Allowable energy} \\ & \Omega = 2 \; \theta/t \; (\Omega: \; \text{Terminal angular velocity}) \\ & \theta: \; \text{Rotation angle (rad)} \\ & t: \; \text{Rotation time (s)} \\ \end{split}$	1/2 x 0.00109 x (2 x (π/2)/0.3) ² = 0.060 J < Allowable energy OK

Series CRQ2

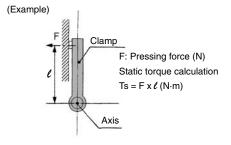

Effective Torque

										I	Unit: N⋅m
0:		Operating pressure (MPa)									
Size	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
10	-	0.09	0.12	0.18	0.24	0.30	0.36	0.42	—	—	—
15	-	0.22	0.30	0.45	0.60	0.75	0.90	1.04	—	—	—
20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24
40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6


Note) The values of operating torque in the table above are representative values, and are not guaranteed. Make use of the values as a reference when ordering.

Allowable Load

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing below is recommended so that a direct load is not applied to the shaft.

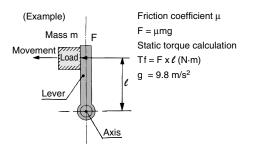


Load Type

• Static load: Ts

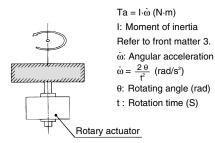
A load as represented by the clamp which requires pressing force only

During examination if it is decided to consider the mass of the clamp itself in the drawing below, it should be regarded as an inertial load.



• Resistance load: Tf

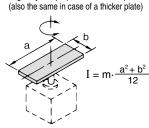
A load that is affected by external forces such as friction or gravity


Since the object is to move the load, and speed adjustment is necessary, allow an extra margin of 3 to 5 times in the effective torque.

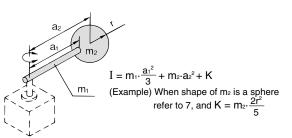
* Actuator effective torque \geq (3 to 5) Tf

Inertial load: Ta

The load which must be rotated by the actuator Since the object is to rotate the load, and speed adjustment is necessary, allow an extra margin of 10 times or more in the effective torque. * Actuator effective torque \geq S·Ta (S is 10 times or more)



Model Selection Series CRQ2


Equation Table of Moment of Inertia (Calculation of moment of inertia I)

I: Moment of inertia (kg·m²) m: Load weight (kg)

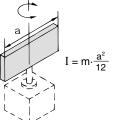
- 1. Thin shaft Position of rotational axis: Perpendicular to the shaft through one end
 - $I = m_1 \cdot \frac{a_1^2}{a_1^2} + m_2 \cdot \frac{a_2^2}{a_2^2}$
- 5. Thin rectangular plate (Rectangular parallelepiped) Position of rotational axis: Through the centre of gravity and perpendicular to the plate

9. Load at end of lever

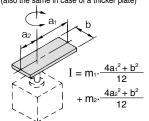
2. Thin shaft Position of rotational axis: Through the shaft's centre of gravity

6. Column (Including thin

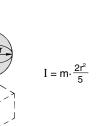
Position of rotational axis: Centre axis

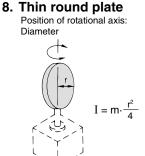

round plate)

 $I = m \cdot \frac{a^2}{12}$

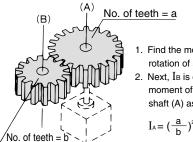

 $I = m \cdot \frac{r^2}{2}$

3. Thin rectangular plate (Rectangular parallelepiped) Position of rotational axis:


Through the plate's centre of gravity



4. Thin rectangular plate (Rectangular parallelepiped) Position of rotational axis: Perpendicular to the plate through one end (also the same in case of a thicker plate)



7. Solid sphere Position of rotational axis: Diameter

10. Gear transmission

- 1. Find the moment of inertia I_B for the rotation of shaft (B).
- 2. Next, IB is entered to find IA the moment of inertia for the rotation of shaft (A) as
 - $I_A = \left(\frac{a}{b}\right)^2 \cdot I_B$

Kinetic Energy/Rotating Time

For a rotational movement, the kinetic energy of a load may damage the internal parts, even if the required torque for a load is small. Consider the moment of inertia and rotation time before selecting a model. (For model selection, please refer to the moment of inertia and rotation time graph as shown on front matter 4.)

1. Allowable kinetic energy and rotation time adjustment range

Set the rotation time, within stable operational guidelines, using the adjustment range specification table as detailed below. When operating at low speeds which exceed the rotation time adjustment range, please use caution as it may result in sticking or malfunction.

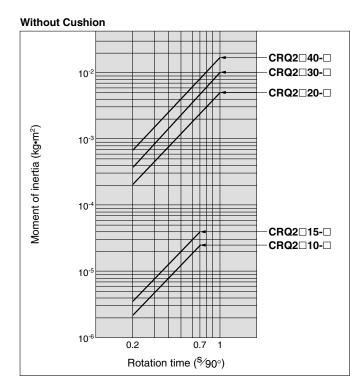
		Stable operational rotation time			
Size	Allowa	ble kinetic energ	Cushion angle	adjustment range	
	Without cushion	Rubber bumper	With air cushion *	Cushion angle	Rotation time (s/90°)
10	—	0.25	—	_	0.2 to 0.7
15	—	0.39	—	_	0.2 to 0.7
20	25	—	120	40°	0.2 to 1
30	48	—	250	40°	0.2 to 1
40	81	—	400	40°	0.2 to 1

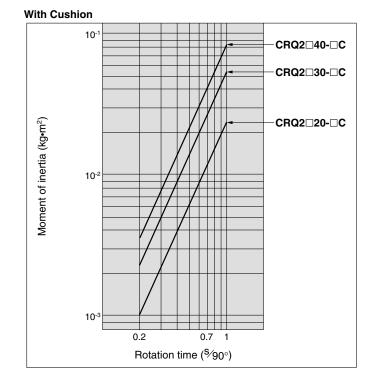
Allowable kinetic energy for the bumper equipped type

Maximum absorbed energy under proper adjustment of the cushion needles.

2. Calculation of moment of inertia

Refer to above formula for moment of inertia, as this will vary, depending on a loads configuration.




Series CRQ2

Kinetic Energy/Rotating Time

3. Model Selection

Select a model based on the moment of inertia and rotation time as shown graph below.

Front matter 4

Rotary Actuator Technical Data Air Consumption

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QCR) required for one reciprocation of the rotary actuator alone is shown in the table below, and can be used to simplify the calculation.

Formulas

$$Q_{CR} = 2V \times \left(\frac{P+0.1}{0.1}\right) \times 10^{-3}$$
$$Q_{CP} = 2 \times a \times \ell \times \left(\frac{P}{0.1}\right) \times 10^{-6}$$
$$Q_{C} = Q_{CR} + Q_{CP}$$

Qo	R = Air consumption of rotary actuator	[ℓ (ANR)]
Qo	P = Air consumption of tubing or piping	[ℓ (ANR)]
V	= Internal volume of rotary actuator	[cm³]
Ρ	= Operating pressure	[MPa]
l	=Length of piping	[mm]
а	= Internal cross section of piping	[mm²]
Qo	 Air conseption required for one reciprocation of rotary actuator 	[ℓ (ANR)]

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formulas

 Qc_2 = Compressor discharge flow rate n = Actuator reciprocations per minute Reserve factor: 1.5 or greater

Internal Cross Section of Tubing and Steel Piping

		J	1 3		
Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section a (mm ²)		
T□0425	4	2.5	4.9		
T□0604	6	4	12.6		
TU 0805	8	5	19.6		
T□0806	8	6	28.3		
1/8B	_	6.5	33.2		
T□1075	10	7.5	44.2		
TU 1208	12	8	50.3		
T□1209	12	9	63.6		
1/4B	_	9.2	66.5		
TS 1612	16	12	113		
3/8B	—	12.7	127		
T⊡1613	16	13	133		
1/2B	_	16.1	204		
3/4B	_	21.6	366		
1B	_	27.6	598		

Rack & Pinion Style: Series CRQ2

Air consumption of rotary actuator: QCRℓ (ANR)

[ℓ/min (ANR)]

Size	Rotating	Internal volume		Operating pressure (MPa)									
Size	angle (°)	V (cm ³)	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	90	1.2	—	0.006	0.007	0.009	0.012	0.014	0.016	0.018	—	—	—
10	180	2.2	—	0.011	0.013	0.018	0.022	0.026	0.031	0.035	—	—	—
	360	4.3	—	0.021	0.026	0.034	0.043	0.051	0.060	0.068	—	—	—
	90	2.9	—	0.015	0.017	0.023	0.029	0.035	0.041	0.046	—	—	—
15	180	5.5	—	0.028	0.033	0.044	0.055	0.066	0.077	0.088	—	—	—
	360	10.7	—	0.023	0.064	0.086	0.107	0.129	0.193	0.172	—	—	—
	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
20	180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	360	26.3	0.105	0.131	0.158	0.210	0.263	0.316	0.368	0.421	0.473	0.526	0.578
	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
30	180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	360	44.7	0.179	0.224	0.268	0.358	0.447	0.537	0.626	0.716	0.805	0.895	0.984
	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
40	180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
	360	76.1	0.304	0.380	0.456	0.609	0.761	0.913	1.07	1.22	1.37	1.52	1.67

Compact Rotary Actuator Rack & Pinion Style Series CRQ2

How to Order **CRQ2B S 20** Without auto switch 90 CDRQ2BS 20 F9BW 90 With auto switch Built-in magnet Shaft type S Single shaft W Double shaft Number of auto switches 2 pcs. Size 4 S 1 pc. 10 n n pcs. 15 20 Auto switch 30 - Without auto switch (Built-in magnet) 40 * For the applicable auto switch model, refer to the table below. Thread type * Auto switches are shipped together, Port type Size (but not assembled). M5 10, 15 . Suffix symbol Rc 1/8 TF G 1/8 Size 20.30.40 Symbol Cushion ΤN NPT 1/8 10 15 20 30 40 ТΤ **NPTF 1/8** Without cushion ____ ۲ ۰ -Rubber bumper • • С Air cushion • • • Rotating angle 90 80° to 100° 180 170° to 190°

360 350° to 370°

Applicable Auto Switches/Refer to pages 9 to 13 for further information on auto switches.

Φ	Onesial	El a stuis a l	tor	10/1-1		Load voltage			Auto switch model		Lead wire length (m)*							
Type	Special function	Electrical entry	Indicator light	(Output)		DC AC						Auto Switt	CITITIOUEI	0.5	3	5	Applic	able load
	lanouon	0.11.7	Pr	(Calpai)		00		Perpendicular	In-line	(Nil)	(L)	(Z)						
5			No	2-wire	24 V	5 V, 12 V	100 V or less	A90V	A90		•	-		Relay, PLC				
Reed switch		Grommet	Yes	3-wire (NPN equiv.)	_	5 V	_	A96V	A96	•	•	_	IC circuit	_				
Å				2-wire	24 V	12 V	100 V	A93V	A93	•	•	—	—	Relay, PLC				
				3-wire (NPN)		5 V, 12 V	EV 10.V	5 V 10 V	5 V 10 V		M9NV	M9N	•	•	0	IC		
-c-				3-wire (PNP)				M9PV	M9P	•	•	0	circuit					
switch				2-wire	1	12 V	1	M9BV	M9B	•	•	0	—					
state	Diagnostic	Grommet	Yes	3-wire (NPN)	24 V	5 V 10 V	_	F9NWV	F9NW	•	•	0	IC	Relay,				
lid st	indication			3-wire (PNP)		5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	V, 12 V	F9PWV	F9PW	•	•	0	circuit	PLC
Solid	(2-colour)						1	F9BWV	F9BW	•	•	0		1				
	Water resistant (2-colour)			2-wire		12 V		—	F9BA ^{**}	—	٠	0						

** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of a water resistant construction.

* Lead wire length symbols: 0.5 m ····· Nil (Example) M9N

5 m ······ Z (Example) M9NZ

• Auto switches marked with "O" are made to order specification.

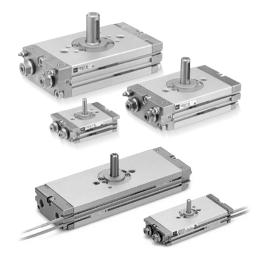
Size	10	15	20	30	40	
Fluid	Air (Non-lube)					
Max. operating pressure	0.7 MPa 1 MPa					
Min. operating pressure	0.15 MPa 0.1 MPa					
Ambient and fluid temperature	0° to 60°C (No freezing)					
Cushion	Rubber	bumper	Not at	tached, Air c	ushion	
Angle adjustment		Ro	tation end ±5°	þ		
Rotation	80° to 100°, 170° to 190°, 350° to 370°					
Port size	M5 x 8 Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8					
Output (N⋅m)*	0.3 0.75 1.8 3.1				5.3	

* Output for an operating pressure of 0.5 MPa. Refer to front matter 2 for further information.

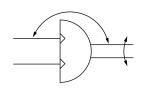
Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowa	Cuphian angle	Stable operational rotation time adjustment range		
	Without cushion	Rubber bumper	bumper With air cushion* Cushion angle		Rotation time (s/90°)
10	—	0.25	—		0.2 to 0.7
15	—	0.39	—		0.2 to 0.7
20	25	—	120	40°	0.2 to 1
30	48	_	250	40°	0.2 to 1
40	81	_	400	40°	0.2 to 1

Allowable kinetic energy for the bumper equipped type


Maximum absorbed energy under proper adjustment of the cushion needles.

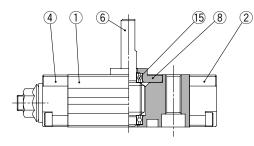
If the rotary actuator is operated above the allowable kinetic energy value, damage may be caused to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

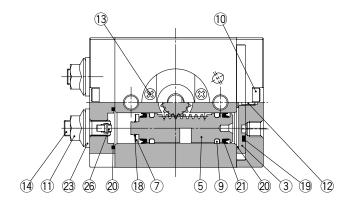

Weight

			(g)				
Size	Standard weight*						
	90°	180°	360°				
10	120	150	200				
15	220	270	380				
20	600	700	1000				
30	900	1100	1510				
40	1400	1600	2280				

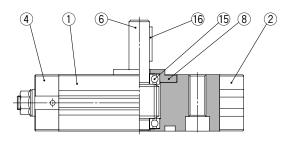
 \ast Excluding the weight of auto switch.

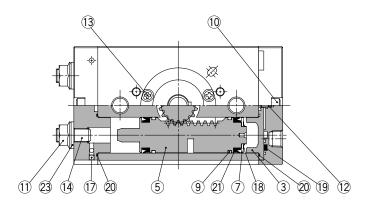
JIS Symbol





Series CRQ2


Construction


Basic type Size 10/15

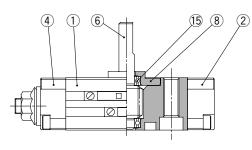
Basic type Size 20/30/40

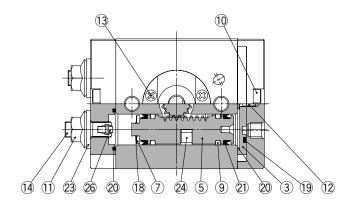
Component Parts

No.		Description	Material		
1	Body		Aluminum alloy		
2	Cover	Aluminum alloy			
3	Plate		Aluminum alloy		
4	End cover	Aluminum alloy			
5	Piston		Stainless steel		
6	Size: 10, 15	Shaft	Stainless steel		
0	Size: 20, 30, 40	Shan	Chrome molybdenum steel		
7	Seal retainer		Aluminum alloy		
8	Bearing retaine	r	Aluminum alloy		
9	Wearing		Resin		
10	Hexagon socke	t head cap screw	Stainless steel		
11	Hexagon nut wi	th flange	Steel wire		
12	Cross recessed	No. 0 screw	Steel wire		
13	Size: 10, 15	Cross recessed No. 0 screw	Steel wire		
13	Size: 20, 30, 40	Cross recessed screw	Sieer wire		

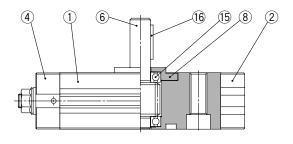
Component Parts

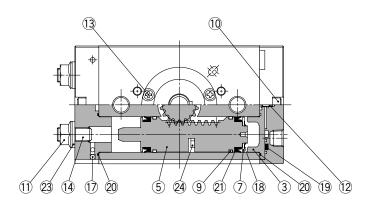
No.	Descrip	tion	Material
14	Hexagon socket head s	et screw	Chrome molybdenum steel
15	Bearing	Bearing steel	
16	Size: 20, 30, 40 only	Parallel key	Carbon steel
17	Size: 20, 30, 40 only	Stainless steel	
18	CS-type retaining ring		Stainless steel
19	Seal		NBR
20	Gasket		NBR
21	Piston seal		NBR
22	Size: 20, 30, 40 only with cushion	Cushion seal	Rubber material
23	Seal washer		NBR
24	With auto switch only	Magnetic material	
25	Size: 20, 30, 40 with cushion only	Cushion valve assembly	
26	Size: 10,15 only	Cushion pad	Rubber material

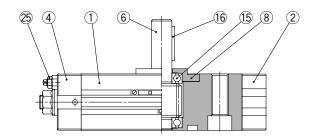

Replacement Parts

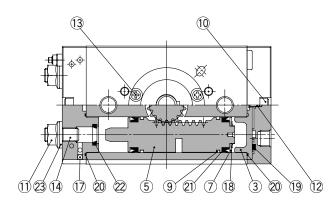

Description			Part no.			Description
Description	10	15	20	30	40	Description
Seal kit	P473010-1	P473020-1	P473030-1	P473040-1	P473050-1	19, 20, 21, 23

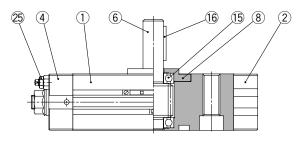
Construction

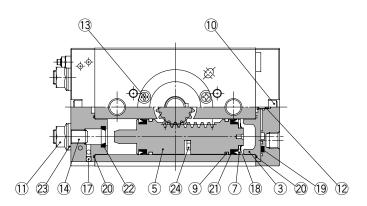

With auto switch Size 10/15



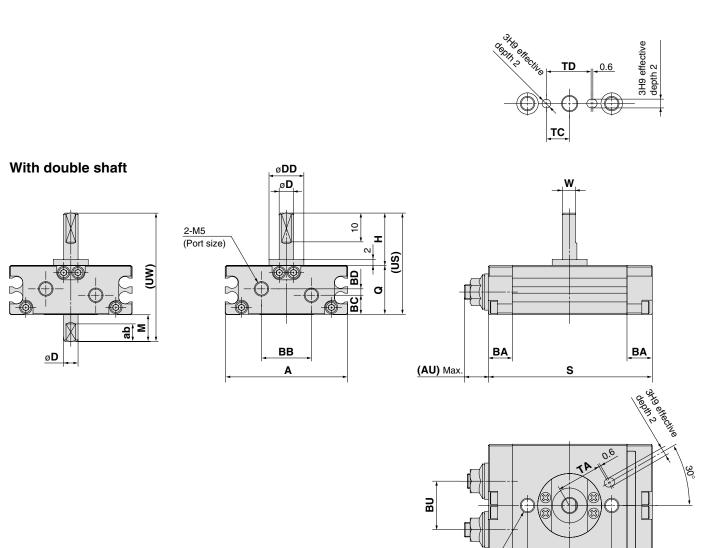

With auto switch


Size 20/30/40




With cushion Size 20/30/40

With auto switch and cushion Size 20/30/40



Series CRQ2

Dimensions

Size 10/15

2-M5 through	
(Opposite side 7.6	

counterbore depth 4.2)

в

												(mm)
Size	Rotating angle	Α	AU*	в	ва	BB	вс	BD	BU	D (g6)	DD (h9)	н
10	90°, 180°, 360°	42	(8.5)	29	8.5	17	6.7	2.2	16.7	5	12	18
15	90°, 180°, 360°	53	(9.5)	31	9	26.4	10.6	—	23.1	6	14	20

Size	Rotating angle	W	Q	S	US	UW	ab	М	TA	тс	TD
	90°			56							
10	180°	4.5	17	69	35	44	6	9	15.5	8	15.4
	360°			97							
	90°			65							
15	180°	5.5	20	82	40	50	7	10	16	9	17.6
	360°			116							

* AU dimension is not the dimension at the time of shipment, since this dimension is for adjustable parts.

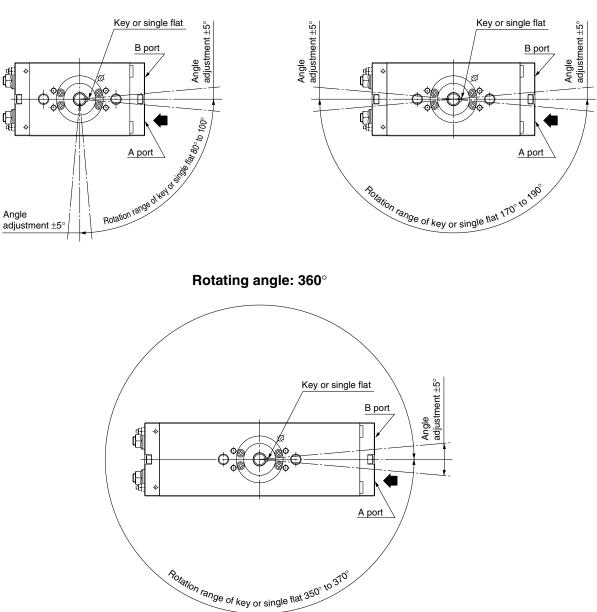
S: Upper 90°, Middle 180°, Lower 360°

Compact Rotary Actuator Rack & Pinion Style Series CRQ2

Dimensions Size 20/30/40 agon **Ti**ecine TF effective depth TL TD TB φ Φ ÷ 🕁 тс With double shaft øDD øD w ¥ Auto switch (10) Max. 2 x Rc 1/8** b т U (Port size) ш (sn) (M) B a BC zĪ≥ BB <u><</u>G BA BA øD Α (AU) Max s depin TI ふ offective These parts are not attached when a model without air cushion is selected. R 5 ₹ U ġ¶ -0 ВШ B 80 Ð 8 x **JJ** 2 x J through BD (Opposite side 4 locations) (Opposite side В **JA**counterbore depth **JB**) (mm) D DD BB вс BD BU CA СВ F JB Size Rotating angle Α AU* В BA BE н J JA (g6) (h9) 20 90°, 180°, 360° 63 (11) 50 14 34 14.5 30.4 7 4.7 10 25 2.5 30 M8 11 6.5 30 90°, 180°, 360° 69 39 16.5 49 34.7 8.1 12 30 3 32 M10 8.5 (11) 68 14 16 4.9 14 40 90°, 180°, 360° 78 (13) 76 16 47 18.5 55 16 40.4 8.3 5.2 15 32 3 36 M10 14 8.6 Keyway dimensions TG (H9) Rotating TF Size JJ Κ Q S w US TA ΤВ тс TD TL UW G М Ν L (H9) angle b I 104 90° 20 З 4⁰_{-0.03} 24.5 13.5 27 4 4 9.6 _0.1 180° 29 130 11.5 20 59 1 2.5 74 8 _0.1 15 11

360° 180 90° 122 M5 4⁰_{-0.03} 30 4 33 153 13.5 20 65 27 2 19 36 4 2.5 83 10_0.1 18 13 11.4 _0.1 180° 4 depth 6 216 360° 90° 139 M6 40 14 ⁰_{-0.1} 5 37 177 17 $5_{-0.03}^{0}$ 25 73 32.5 2 20 39.5 5 5 3.5 93 11 _{-0.1} 20 15 180° depth 7 253 360°

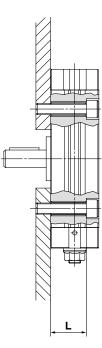
* AU dimension is not the dimension at the time of shipment, since this dimension is for adjustable parts. ** In addition to Rc 1/ 8, G 1/ 8, NPT 1/ 8, NPTF 1/ 8 are also available. S: Upper 90°, Middle 180°, Lower 360°


Series CRQ2

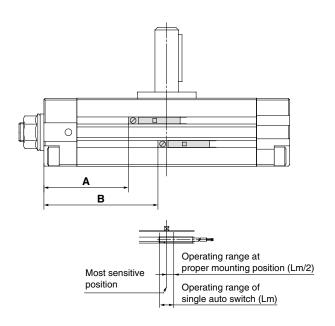
Rotation Range

When pressurised from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

Rotating angle: 90°


Rotating angle: 180°

Compact Rotary Actuator Rack & Pinion Style Series CRQ2


Unit Used as Flange Mount

The L dimensions of this unit are shown in the table below. When a hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the counter bore of the actuator.

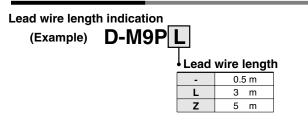
Size	L	Screw
10	13	M4
15	16	M4
20	22.5	M6
30	24.5	M8
40	28.5	M8

Auto Switch Proper Mounting Position at Rotation End

			Reed s	switch		Solid state switch																																							
Size	Rotating angle	A	в	Operating angle (θ m)	Hystere- sis angle	A	в	Operating angle (θ m)	Hystere- sis angle																																				
	90°	15	21.5			19	25.5																																						
10	180°	18	31	63°	12°	22	35	75°	3°																																				
	360°	25	52.5			29	56.5																																						
	90°	18.5	27			22.5	31																																						
15	180°	22.5	39.5	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	52°	9 °	26.5	43.5	69°	3°
	360°	30.5	64.5			34.5	68.5																																						
	90°	36	48.5			40	52.5																																						
20	180°	42	67.5	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	41°	9 °	46	71.5	56°	4°																
	360°	55.5	106]		59.5	110	1																																					
	90°	43	59			47	63																																						
30	180°	51	82	32°	7 °	55	86	43°	3°																																				
	360°	62	125.5]		66	129.5																																						
	90°	50	69			54	73																																						
40	180°	59.5	97.5	24°	5°	63.5	101.5	36°	4°																																				
	360°	72.5	152]		76.5	156																																						

Operating angle θ m: The value of the individual switch's movement range Lm as represented by an angle.

Hysteresis angle: Value of the switch's hysteresis as represented by an angle.



Series CRQ2 Auto Switch Specifications

Auto Switch Common Specifications

Туре	Reed switch	Solid state switch
Leakage current	None	3-wire: 100 µA or less 2-wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	300 m/s ²	1000 m/s ²
Insulation resistance	50 M Ω or more at 500 Mega VD	OC (between lead wire and case)
Withstand voltage	1000 VAC for 1 minute (be	etween lead wire and case)
Ambient temperature	-10 to	o 60°C
Enclosure	IEC529 standard IP67, JIS C	0920 waterproof construction

Lead Wire Length

Note 1) Applicable auto switch with 5 m lead wire "Z"

Solid state switch: Manufactured upon receipt of order as standard. Note 2) To designate solid state switches with flexible specifications, add "-61" after the lead wire length.

Flexible specification

Contact Protection Boxes: CD-P11, CD-P12

<Applicable switch model>

D-A9/A9□V

The auto switches below do not have a built-in contact protection circuit. Therefore, please use a contact protection box with the switch for any of the following cases:

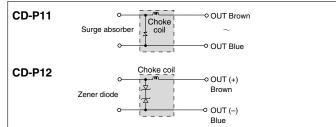
① Where the operation load is an inductive load.

2 Where the wiring length to load is greater than 5 m.

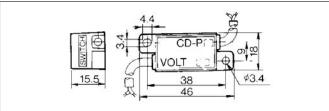
③ Where the load voltage is 100 VAC.

The contact life may be shortened. (Due to permanent energising conditions.)

Specifications

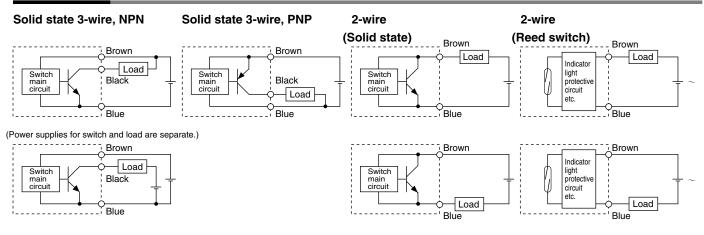

Part no.	CD	CD-P12	
Load voltage	100 VAC	24 VDC	
Maximum load current	25 mA	12.5 mA	50 mA

* Lead wire length — Switch

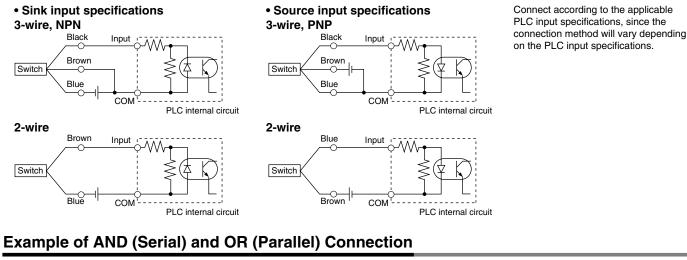

- Switch conneciton side 0.5 m Load connection side 0.5 m

Internal Circuit

Dimensions

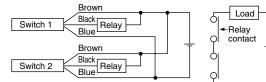

Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than 1 metre.

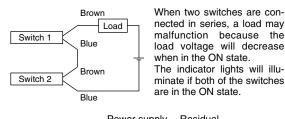


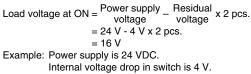
Series CRQ2 Auto Switch Connections and Examples

Basic Wiring

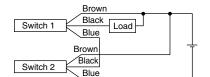


Example of Connection to PLC (Programmable Logic Controller)

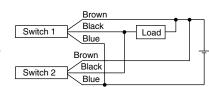



• 3-wire

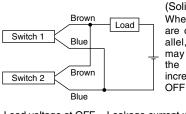
AND connection for NPN output (using relays)



2-wire with 2-switch AND connection



AND connection for NPN output (performed with switches only)



OR connection for NPN output

The indicator lights will illuminate when both switches are turned ON.

2-wire with 2-switch OR connection

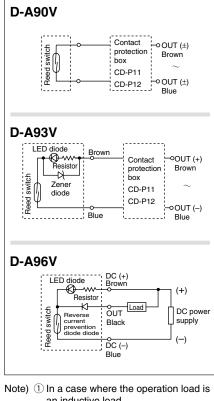
Load voltage at OFF = Leakage current x 2 pcs. x Load impedance = 1 mA x 2 pcs. x 3 k Ω = 6 V

Example: Load impedance is 3 kΩ. Leakage current from switch is 1 mA.

(Solid state) When two switches are connected in parallel, a malfunction may occur because the load voltage will increase when in the OFF state. (Reed switch)

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes dim or not light because of the dispersion and reduction of the current flowing to the switches.

Reed Switch: Direct Mounting Style D-A90(V)/D-A93(V)/D-A96(V) F


Grommet Electrical entry direction: In-line

Caution **Operating Precautions**

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Internal Circuit

- an inductive load.
 - 2 In a case where the wiring load is greater than 5 m.
 - ③ In a case where the load voltage is 100 VAC.

Use the auto switch with a contact protection box in any of the above mentioned cases. (For details about the contact protection box, refer to page 9.)

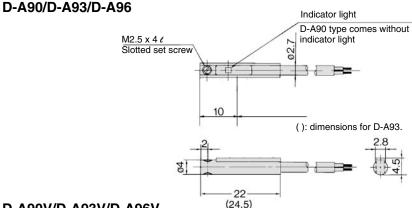
Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

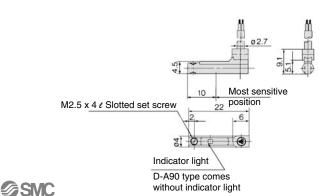
Unit: g

Unit: mm

	PLC: Programmable Logic Controller										
D-A90/D-A90V (Without indicator light)											
Auto switch part no.	D-A90/D-A90V										
Applicable load		IC circuit, Relay, PLC									
Load voltage	24 V AC/DC or less	48 V AC/DC or less	100 V AC/DC or less								
Maximum load current	50 mA	40 mA	20 mA								
Contact protection circuit		None									
Internal resistance 1 Ω or less (including lead wire length of 3 m)											
D-A93/D-A93V/D-A96/D-A96V (With indicator light)											
Auto switch part no.	D-A93/	D-A93V	D-A96/D-A96V								
Applicable load	Relay	r, PLC	IC circuit								
Load voltage	24 VDC	100 VAC	4 to 8 VDC								
Load current range and max. load current	5 to 40 mA	5 to 20 mA	20 mA								
Contact protection circuit		None									
Internal voltage drop	D-A93 — 2.4 V or less (to 20 mA)/3 V or less (to 40 mA) D-A93V— 2.7 V or less 0.8 V or less										
Indicator light	Re	ed LED illuminates when C	N.								


Lead wires

D-A90(V)/D-A93(V) — Oilproof heavy-duty vinyl cable: ø2.7, 0.18 mm² x 2 cores (Brown, Blue), 0.5 m D-A96(V) — Oilproof heavy-duty vinyl cable: ø2.7, 0.15 mm² x 3 cores (Brown, Black, Blue), 0.5 m Note 1) Refer to page 9 for reed switch common specifications. Note 2) Refer to page 9 for lead wire lengths.


Weight

Model	D-A90	D-A90V	D-A93	D-A93V	D-A96	D-A96V
Lead wire length 0.5 m	6	6	6	6	8	8
Lead wire length 3 m	30	30	30	30	41	41

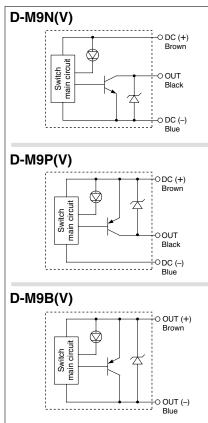
Dimensions

D-A90V/D-A93V/D-A96V

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) ((

Grommet

- 2-wire load current is reduced (2.5 to 40 mA)
- Lead free
- UL certified (style 2844) lead cable is used.



∆Caution

Operating Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Internal Circuit

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at <u>www.smcworld.com.</u>

				PLC: Progr	ammable Lo	gic Controller
D-M9□/D-M9□V (With indicator light)						
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire			2-wire		
Output type	NPN PNP		_			
Applicable load	IC circuit, Relay, PLC			24 VDC relay, PLC		
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			-	-	
Current consumption	10 mA or less			-	_	
Load voltage	28 VDC or less		—		24 VDC (10 to 28 VDC)	
Load current	40 mA or less			2.5 to 40 mA		
Internal voltage drop	0.8 V or less			4 V c	or less	
Leakage current	100 μA or less at 24 VDC			0.8 mA	or less	
Indicator light	Red LED illuminates when ON.					

Lead wires

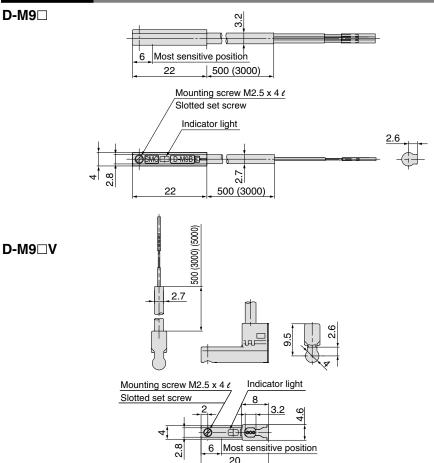
Oilproof heavy-duty vinyl cable: ø2.7 x 3.2 ellipse

D-M9B(V) 0.15 mm² x 2 cores

D-M9N(V), D-M9P(V) 0.15 mm² x 3 cores

Note 1) Refer to page 9 for solid state switch common specifications.

Note 2) Refer to page 9 for lead wire lengths.

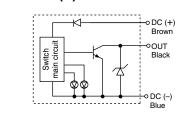

Weight

Unit: g

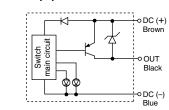
Unit: mm

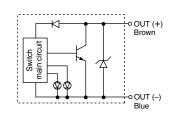
Auto switch part n	0.	D-M9N(V)	D-M9P(V)	D-M9B(V)
	0.5	8	8	7
Lead wire length (m)	3	41	41	38
	5	68	68	63

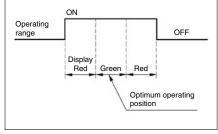
Dimensions



2-colour Indication, Solid State Switch: Direct Mounting Style D-F9NW(V)/D-F9PW(V)/D-F9BW(V) (€


Grommet


Auto Switch Internal Circuit D-F9NW(V)


D-F9PW(V)

D-F9BW(V)

Indicator light/Display method

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

				PLC: Prog	rammable Lo	ogic Controller
D-F9 W/D-F9 W/V (With indicator light)						
Auto switch part no.	D-F9NW	D-F9NWV	D-F9PW	D-F9PWV	D-F9BW	D-F9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire			2-wire		
Output type	NPN		PNP		—	
Applicable load	IC circuit, Relay IC, PLC			24 VDC relay, PLC		
Power supply voltage	5, 12, 24 VDC (4.5 to 28 VDC)					
Current consumption	10 mA or less				—	
Load voltage	28 VDC or less		—		24 VDC (1	0 to 28 VDC)
Load current	40 mA or less		80 mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less (0.8 V or less at 10 mA load current)		0.8 V or less		4 V or less	
Leakage current	100 μA or less at 24 VDC			0.8 m	A or less	
Indicator light	Operating position Red LED illuminates. Optimum operating position Green LED illuminates.					

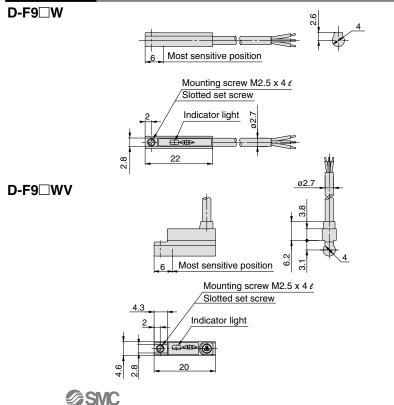
Lead wires

Oilproof heavy-duty vinyl cable: ø2.7, 0.15 mm² x 3 cores (Brown, Black, Blue),

0.18 mm² x 2 cores (Brown, Blue), 0.5 m

Note 1) Refer to page 9 for solid state switch common specifications.

Note 2) Refer to page 9 for lead wire lengths.


Weight

Unit: g

Unit: mm

Auto switch part n	0.	D-F9NW(V)	D-F9PW(V)	D-F9BW(V)
	0.5	7	7	7
Lead wire length (m)	3	34	34	32
	5	56	56	52

Dimensions

Series CRQ2 Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "**Caution**", "**Warning**" or "**Danger**". To ensure safety, be sure to observe ISO 4414 ^{Note 1}, JIS B 8370 ^{Note 2} and other safety practices.

Explanation of the Labels

Labels	Explanation of the labels
\land Danger	In extreme conditions, there is a possible result of serious injury or loss of life.
\land Warning	Operator error could result in serious injury or loss of life.
A Caution	Operator error could result in injury Note 3) or equipment damage Note 4).

Note 1) ISO 4414: Pneumatic fluid power - General rules relating to systems

Note 2) JIS B 8370: General Rules for Pneumatic Equipment

Note 3) Injury indicates light wounds, burns and electrical shocks that do not require hospitalisation or hospital visits for long-term medical treatment.

Note 4) Equipment damage refers to extensive damage to the equipment and surrounding devices.

Selection/Handling/Applications

1. The compatibility of the pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.

Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or post analysis and/or tests to meet the specific requirements. The expected performance and safety assurance are the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalogue information with a view to giving due consideration to any possibility of equipment failure when configuring a system.

- 2. Only trained personnel should operate pneumatically operated machinery and equipment. Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators. (Understanding JIS B 8370 General Rules for Pneumatic Equipment, and other safety rules are included.)
- 3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
 - 1. Inspection and maintenance of machinery/equipment should only be performed once measures to prevent falling or runaway of the driver objects have been confirmed.
 - When equipment is removed, confirm that safety process as mentioned above. Turn off the supply pressure for this equipment and exhaust all residual compressed air in the system, and release all the energy (liquid pressure, spring, condenser, gravity).
 Before machinery/equipment is restarted, take measures to prevent quick extension of a cylinder piston rod, etc.
- 4. Contact SMC if the product will be used in any of the following conditions:
 - 1. Conditions and environments beyond the given specifications, or if product is used outdoors.
 - 2. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, clutch and brake circuits in press applications, or safety equipment.
 - An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.
 If the products are used in an interlock circuit, prepare a double interlock style circuit with a mechanical protection function for the prevention of a breakdown. And, examine the devices periodically if they function normally or not.

■ Exemption from Liability

- 1. SMC, its officers and employees shall be exempted from liability for any loss or damage arising out of earthquakes or fire, action by a third person, accidents, customer error with or without intention, product misuse, and any other damages caused by abnormal operating conditions.
- 2. SMC, its officers and employees shall be exempted from liability for any direct or indirect loss or damage, including consequential loss or damage, loss of profits, or loss of chance, claims, demands, proceedings, costs, expenses, awards, judgments and any other liability whatsoever including legal costs and expenses, which may be suffered or incurred, whether in tort (including negligence), contract, breach of statutory duty, equity or otherwise.
- 3. SMC is exempted from liability for any damages caused by operations not contained in the catalogues and/or instruction manuals, and operations outside of the specification range.
- 4. SMC is exempted from liability for any loss or damage whatsoever caused by malfunctions of its products when combined with other devices or software.

Be sure to read this before handling.

Design & Selection

MWarning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of current load, voltage, temperature or impact. We do not guarantee any damage in any case the product is used outside of the specification range.

2. Keep wiring as short as possible.

<Reed switch>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

- 1) Use a contact protection box when the wire length is 5 m or longer.
- 2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30 m long, it is not able to adequately absorb the rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please contact SMC in this case.

<Solid state switch>

Although wire length should not affect switch function, use a wire 100 m or shorter.

3. Do not use a load that generates surge voltage. If a surge voltage is generated, the discharge occurs at the contact, possibly resulting in the shortening of product life.

<Reed switch>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

4. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.

5. Do not make any modifications to the product.

Do not take the product apart. It may cause human injuries and accidents.

1. Use caution when multiple actuators are used and close to each other.

When two or more auto switch actuators are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm. (When the allowable interval is specified for each cylinder series, use the indicated value.)

- 2. Take note of the internal voltage drop of the switch. <Reed switch>
 - 1) Switches with an indicator light (Except D-A96, A96V)
 - If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)

[The voltage drop will be "n" times larger when "n" auto switches are connected.]

Even though an auto switch operates normally, the load may not operate.

_____ O____ O____ Load ____

 In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply _ Internal voltage _ Minimum operating voltage of load

 If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model D-A90, A90V).

<Solid state switch>

3) Generally, the internal voltage drop will be greater with a 2wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also, note that a 12 VDC relay is not applicable.

3. Pay attention to leakage current.

<Solid state switch>

With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3-wire switch if this specification will not be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

4. Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Be sure to read this before handling.

Mounting & Adjustment

A Warning

1. Instruction manual

Install the products and operate them only after reading the instruction manual carefully and understanding its contents. Also keep the manual where it can be referred to as necessary.

2. Do not drop or bump.

Do not drop, bump or apply excessive impacts (300 m/s² or more for reed switches and 1000 m/s² or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

3. Mount switches using the proper fastening torque.

When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position. (Refer to switch mounting for each series regarding switch mounting, moving, and fastening torque, etc.)

4. Mount a switch at the centre of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the centre of the operating range (the range in which a switch is ON).

(The mounting position shown in a catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

<D-M9□(V)>

When the D-M9 \Box (V) auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.

Such as

- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced.)

In these applications, set the auto switch to the centre of the required detecting range.

5. Securing the space for maintenance

When installing the products, please allow access for maintenance.

Caution

1. Do not carry an actuator by the auto switch lead wires.

Never carry a cylinder (actuator) by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

2. Fix the switch with appropriate screw installed on the switch body. If using other screws, switch may be damaged.

Wiring

∕ Marning

1. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

2. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

ACaution

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied. <2-wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Do not allow short circuit of loads.

<Reed switch>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switch>

Model D-M9 \square (V), F9 \square W(V) and all models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.

Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3-wire type switches.

Be sure to read this before handling.

Wiring

ACaution

4. Avoid incorrect wiring.

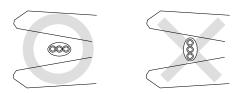
<Reed switch>

A 24 VDC switch with indicator light has polarity. The brown lead wire or the first terminal are (+) and the blue lead wire or the second terminal are (-).

 If connections are reversed, a switch will operate, however, the light emitting diode will not light up. Also note that a current greater than that specified will dama-

ge a light emitting diode and it will no longer operate. Applicable models:

D-A93, D-A93V


<Solid state switch>

- If connections are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
- If connections are reversed (power supply line + and power supply line -) on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line (-) is connected to the black wire, the switch will be damaged.

<D-M9□(V), F6□>

D-M9 \square (V) does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g. (+) power supply wire and (–) power supply wire connection is reversed), the switch will be damaged.

5. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9□(V) only)

Recommended Tool

Model name	Model no.
Wire stripper	D-M9N-SWY

 \ast Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

Operating Environment

A Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

Auto switches will malfunction or magnets inside actuators will become demagnetised.

3. Do not use in an environment where the auto switch will be continually exposed to water.

Although switches, satisfy IEC standard IP67 construction (JIS C 0920: watertight construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.

4. Do not use in an environment with oil or chemicals.

Consult with SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.

5. Do not use in an environment with temperature cycles.

Consult with SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.

6. Do not use in an environment where there is excessive impact shock.

<Reed switch>

When excessive impact (300 m/s² or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1 ms or less). Consult with SMC regarding the need to use a solid state switch depending upon the environment.

7. Do not use in an area where surges are generated. <Solid state switch>

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around actuators with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and crossed lines.

Be sure to read this before handling.

Operating Environment

ACaution

1. Avoid accumulation of iron debris or close contact with magnetic substances.

When a large amount of ferrous debris such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch actuator, it may cause the auto switch (actuator) to malfunction due to a loss of the magnetic force inside the actuator.

- 2. Consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.
- 3. Do not use in direct sunlight.
- 4. Do not mount the product in locations where it is exposed to radiant heat.

Maintenance

A Warning

- 1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
 - Securely tighten switch mounting screws.
 If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
 - Confirm that there is no damage to lead wires. To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
 - Confirm the lighting of the green light on the 2-colour indicator type switch.

Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

2. Maintenance procedures are outlined in the operation manual.

Not following proper procedures could cause the product to malfunction and could lead to damage to the equipment or machine.

3. Removal of equipment, and supply/exhaust of compressed air

Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and reduce the pressure in the system to zero. Only then should you proceed with the removal of any machinery and equipment.

When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent actuators from sudden movement.

EUROPEAN SUBSIDIARIES:

Austria

SMC Pneumatik GmbH (Austria). Girakstrasse 8, A-2100 Korneuburg Phone: +43 2262-62280, Fax: +43 2262-62285 E-mail: office@smc.at http://www.smc.at

Belgium SMC Pneumatics N.V./S.A. Nijverheidsstraat 20, B-2160 Wommelgem Phone: +32 (0)3-355-1464, Fax: +32 (0)3-355-1466

E-mail: post@smcpneumatics.be http://www.smcpneumatics.be

Bulgaria SMC Industrial Automation Bulgaria EOOD 16 kliment Ohridski Blvd., fl.13 BG-1756 Sofia Phone:+359 2 9744492, Fax:+359 2 9744519 E-mail: office@smc.bg http://www.smc.bg

Croatia SMC Industrijska automatika d.o.o. Crnomerec 12, 10000 ZAGREB Phone: +385 1 377 66 74, Fax: +385 1 377 66 74 E-mail: office@smc.hr http://www.smceu.com

Czech Republic SMC Industrial Automation CZ s.r.o. Hudcova 78a, CZ-61200 Brno Phone: +420 5 414 24611, Fax: +420 5 412 18034 E-mail: office@smc.cz http://www.smc.cz

SMC Pneumatik A/S Knudsminde 4B, DK-8300 Odder Phone: +45 70252900, Fax: +45 70252901 E-mail: smc@smc-pneumatik.dk http://www.smcdk.com

Estonia SMC Pneumatics Estonia OÜ Laki 12-101, 106 21 Tallinn Phone: +372 (0)6 593540, Fax: +372 (0)6 593541 E-mail: smc@smcpneumatics.ee http://www.smcpneumatics.ee

Pure Single Sing E-mail: smcfi@smc.fi http://www.smc.fi

SMC Pneumatique, S.A. 1, Boulevard de Strasbourg, Parc Gustave Eiffel Bussy Saint Georges F-77607 Marne La Vallee Cedex 3 Phone: +33 (0)1-6476 1000, Fax: +33 (0)1-6476 1010 E-mail: contact@smc-france.fr http://www.smc-france.fr

Germany SMC Pneumatik GmbH Boschring 13-15, D-63329 Egelsbach Phone: +49 (0)6103-4020, Fax: +49 (0)6103-402139 E-mail: info@smc-pneumatik.de http://www.smc-pneumatik.de

France

Greece

Parianopoulus S.A. S. 7, Konstantinoupoleos Street, GR-11855 Athens Phone: +30 (0)1-3426076, Fax: +30 (0)1-3455578 E-mail: parianos@hol.gr http://www.smceu.com

Hungary

SMC Hungary Ipari Automatizálási Kft. Budafoki ut 107-113, H-1117 Budapest Phone: +36 1 371 1343, Fax: +36 1 371 1344 E-mail: office @ smc-automation.hu http://www.smc-automation.hu

Ireland SMC Pneumatics (Ireland) Ltd. 2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin Phone: +333 (0)1-403 9000, Fax: +333 (0)1-464-0500 E-mail: sales@smcpneumatics.ie http://www.smcpneumatics.ie

SMC Italia S.p.A Via Garibaldi 62, I-20061Carugate, (Milano) Phone: +39 (0)2-92711, Fax: +39 (0)2-9271365 E-mail: mailbox@smcitalia.it http://www.smcitalia.it

Latvia SMC Pneumatics Latvia SIA Smerla 1-705, Riga LV-1006, Latvia Phone: +371 781-77-00, Fax: +371 781-77-01 E-mail: info@smclv.lv http://www.smclv.lv

SMC Pneumatics Lietuva, UAB Savanoriu pr. 180, LT-01354 Vilnius, Lithuania Phone: +370 5 264 81 26, Fax: +370 5 264 81 26

Netherlands SMC Pneumatics BV

De Ruyterkade 120, NL-1011 AB Amsterdam Phone: +31 (0)20-5318888, Fax: +31 (0)20-5318880 E-mail: info@smcpneumatics.nl http://www.smcpneumatics.nl

SMC Pneumatics Norway A/S Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker Tel: +47 67 12 90 20, Fax: +47 67 12 90 21 E-mail: post@smc-norge.no http://www.smc-norge.no

SMC Industrial Automation Polska Sp.z.o.o. ul. Konstruktorska 11A, PL-02-673 Warszawa, Phone: +48 22 548 5085, Fax: +48 22 548 5087 E-mail: office@smc.pl http://www.smc.pl

Portugal SMC Sucursal Portugal, S.A. Rua de Eng^a Ferreira Dias 452, 4100-246 Porto Phone: +351 22-610-89-22, Fax: +351 22-610-89-36 E-mail: postpt@smc.smces.es

http://www.smces.es

SMC Romania srl Str Frunzei 29, Sector 2, Bucharest Phone: +40 213205111, Fax: +40 213261489 E-mail: smcromania@smcromania.ro http://www.smcromania.ro

Russia SMC Pneumatik LLC. 4B Sverdlovskaja nab, St. Petersburg 195009 Phone.:+812 718 5445, Fax:+812 718 5449 E-mail: info@smc-pneumatik.ru http://www.smc-pneumatik.ru

Slovakia SMC Priemyselná Automatizáciá, s.r.o. Námestie Martina Benku 10, SK-81107 Bratislava Phone: +421 2 444 56725, Fax: +421 2 444 56028 E-mail: office@smc.sk http://www.smc.sk

Slovenia

SMC industrijska Avtomatika d.o.o. Grajski trg 15, SLO-8360 Zuzemberk Phone: +386 738 85240 Fax: +386 738 85249 E-mail: office@smc-ind-avtom.si http://www.smc-ind-avtom.si

Zuazobidea 14, 01015 Vitoria Phone: +34 945-184 100, Fax: +34 945-184 124 E-mail: post@smc.smces.es http://www.smces.es

Sweden SMC Pneumatics Sweden AB Ekhagsvägen 29-31, S-141 71 Huddinge Phone: +46 (0)8-603 12 00, Fax: +46 (0)8-603 12 90 E-mail: post@smcpneumatics.se http://www.smc.nu

SMC Pneumatik AG Dorfstrasse 7, CH-8484 Weisslingen Phone: +41 (0)52-396-3131, Fax: +41 (0)52-396-3191 E-mail: info@smc.ch http://www.smc.ch

Entek Pnömatik San. ve Tic Ltd. Sti. Perpa Tic. Merkezi Kat: 11 No: 1625, TR-80270 Okmeydani Istanbul Phone: +90 (0)212-221-1512, Fax: +90 (0)212-221-1519 E-mail: smc-entek@entek.com.tr http://www.entek.com.tr

SMC Pneumatics (UK) Ltd Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN Phone: +44 (0)800 1382930 Fax: +44 (0)1908-555064 E-mail: sales@smcpneumatics.co.uk http://www.smcpneumatics.co.uk

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, INDONESIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILAND, USA, VENEZUELA

> http://www.smceu.com http://www.smcworld.com

