

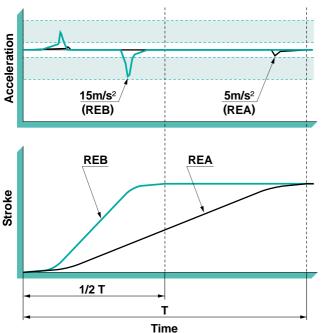
Sine Rodless Cylinder Series REA/REB

(Max. speed: 300mm/s) (Max. speed: 600mm/s)

Introducing series REB with a maximum speed of 600mm/s

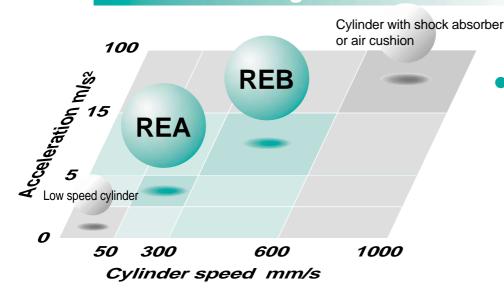
Allows rapid

Magnetic disks
Ceramic products


Class products

Control

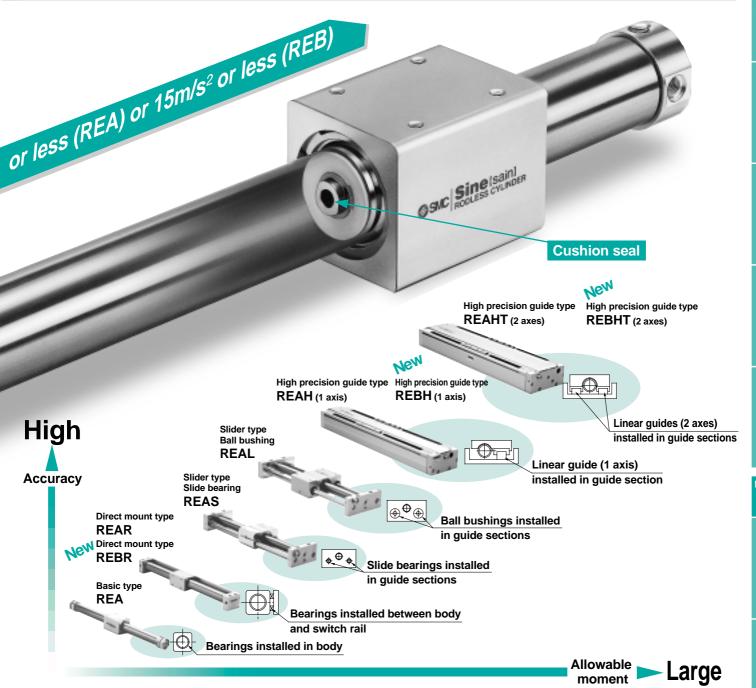
Throughput dramatically increased (Maximum speed: 600mm/s)


Liquid crystal substrates

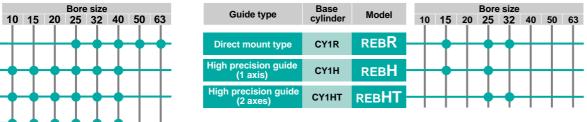
Series REB introduced with a maximum speed of 600mm/s. Compared with the previous type (series REA: 300mm/s), the tact time can be shortened by approximately 1/2.

Acceleration ranges

Series variations ———Series REA (300mm/s)


ring is provided with a variable throttle groove in its longitudinal direction.

,	,	
Guide type	Base cylinder	Model
Basic type	CY1B	REA
Direct mount type	CY1R	REAR
Slider type (slide bearing)	CY1S	REAS
Slider type (ball bushing)	CY1L	REAL
High precision guide (1 axis)	СҮ1Н	REAH
High precision guide (2 axes)	CY1HT	REAHT


sensitive work pieces Sine Rodless Cylinder Series REA/REB

(Max. speed 300mm/s)

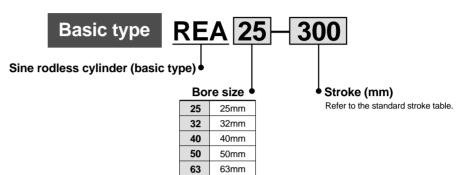
(Max. speed 600mm/s)

Series REB (600mm/s)

Series REA/REAR/REBR/REAS/REAL/REAH/REBH

Model Selection Criteria

Madalaskadasadas	Recommended cylinder				
Model selection criteria		Appearance	Features		
When many different types of guides are used When a long stroke is necessary	guide type	Series REA Size: Ø25, Ø32, Ø40, Ø50, Ø63	• Wide variations from ø25 to ø63	Long strokes available.	
When many different types of guides are used When auto switches are added to the basic type When used without a guide for a light load When space is very limited	Non-integrated guide type	Series REAR Size: Ø10, Ø15, Ø20, Ø25, Ø32, Ø40 Series REBR Size: Ø15, Ø25, Ø32	Available with a maximum speed of 300mm/s or 600mm/s.	Cylinder can be directly mounted. Auto switch capable, with no cylinder lurching. Rotation can be stopped within an allowable range. Compact external dimensions Mounting can be performed from the top or one side.	
To ensure a permanent path When used for general transfer operations • When used for general transfer operations		Series REAS Size: Ø10, Ø15, Ø20, Ø25, Ø32, Ø40	A load can be carried directly by the integrated guide type.	Smooth operation is made possible by using special slide bearings.	
To ensure a permanent path When smoother operation is required, even with an eccentric load • To ensure a permanent path	Integrated guide type	Series REAL Size: Ø10, Ø15, Ø20, Ø25, Ø32, Ø40	The centralized piping type allows concentration of piping on one side plate. Auto switch capable. Available with a maximum speed of 300mm/s or 600mm/s.	Stable operation is possible, even with an eccentric load, by using ball bushings.	
To ensure a permanent path When a large load, large moment or high precision are required When used for pick-and-place operations, etc.	=	Series REAH Size: Ø10, Ø15, Ø20, Ø25, Ø32 Series REBH Size: Ø15, Ø25, Ø32	(RE⊡H/High precision guide type)	The use of a linear guide facilitates a large load, large moment and high precision. Mounting freedom is improved by providing T-slots on the mounting surfaces. A top cover mounted over the sliding parts of the cylinder prevents scratches and damage, etc.	


Sine Rodless Cylinder

Series REA Basic Type/ø25, ø32, ø40, ø50, ø63

How to Order

Symbol

Specifications

Fluid	Air	
Proof pressure	1.05MPa	
Maximum operating pressure	0.7MPa	
Minimum operating pressure	0.18MPa	
Ambient and fluid temperature	-10 to 60°C (with no freezing)	
Piston speed	50 to 300mm/s	
Lubrication	Non-lube	
Stroke length tolerance	0 to 250st: ⁺¹ ₀ , 251 to 1000st: ^{+1.4} ₀ , 1001st and up: ^{+1.8} ₀	

Standard Strokes

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)
25	200, 250, 300, 350, 400, 450, 500, 600, 700, 800	4000
32	200, 250, 300, 350, 400, 450, 500, 600, 700, 800	4000
40	200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000	5000
50	200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000	6000
63	200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000	6000

Note 1) Intermediate strokes can be arranged in 1mm increments. Note 2) Strokes over 2000mm are available as order made. (Refer to -XB11 on page 88)

Magnetic Holding Force

					(14)
Bore size (mm)	25	32	40	50	63
Holding force	363	588	922	1,470	2,260

Weights

					(kg)
Bore size (mm)	25	32	40	50	63
Basic weight	0.71	1.34	2.15	3.4	5.7
Additional weight per 50mm stroke	0.05	0.07	0.08	0.095	0.12

Calculation example: REA32-500

Cylinder stroke 500mm

Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Mounting

⚠ Caution

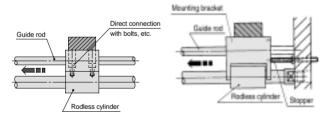
1. Take care to avoid nicks or other damage on the outside surface of the cylinder tube.

This can lead to damage of the scraper and wear ring, which in turn can cause malfunction.

2. Pay attention to the rotation of the external slider.

Rotation should be controlled by connecting it to another shaft (linear guide, etc.).

3. Do not operate with the magnetic coupling out of position.


In case the magnetic coupling is out of position, push the external slider back into the correct position by hand at the end of the stroke (or correct the piston slider with air pressure).

 Be sure that both head covers are secured to the mounting surface before operating the cylinder.

Avoid operation with the external slider secured to the surface.

5. Do not apply a lateral load to the external slider.

When a load is mounted directly to the cylinder, variations in the alignment of each shaft center cannot be offset, and this results in the generation of a lateral load that can cause malfunction. The cylinder should be operated using a connection method which allows for shaft alignment variations and deflection due to the cylinder's own weight. A drawing of a recommended mounting is shown in Figure 2.

Variations in the load and cylinder shaft alignment cannot be offset and may result in a malfunction. Shaft alignment variations are offset by providing clearance between the mounting bracket and cylinder. Moreover, the mounting bracket is extended above the cylinder shaft center, so that the cylinder is not subjected to moment.

Figure 1. Incorrect mounting

Figure 2.
Recommended mounting

6. Use caution regarding the allowable load weight when operating in a vertical direction.

The allowable load weight when operating in a vertical direction (reference values on page 5 is determined by the model selection method. However, if a load greater than the allowable value is applied, the magnetic coupling may break and there is a possibility of dropping the load. When using this type of application, contact SMC regarding the operating conditions (pressure, load, speed, stroke, frequency, etc.).

Disassembly & Maintenance

⚠ Caution

1. When reattaching the head covers after disassembly, confirm that they are tightened securely.

When disassembling, hold the wrench flats of one head cover with a vise, and remove the other cover using a spanner or adjustable wrench on the wrench flats. When retightening, first coat with Loctite (No. 542 red), and retighten 3 to 5° past the original position prior to removal.

Stroke Adjustment

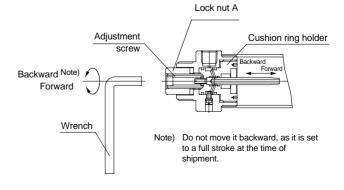
⚠ Caution

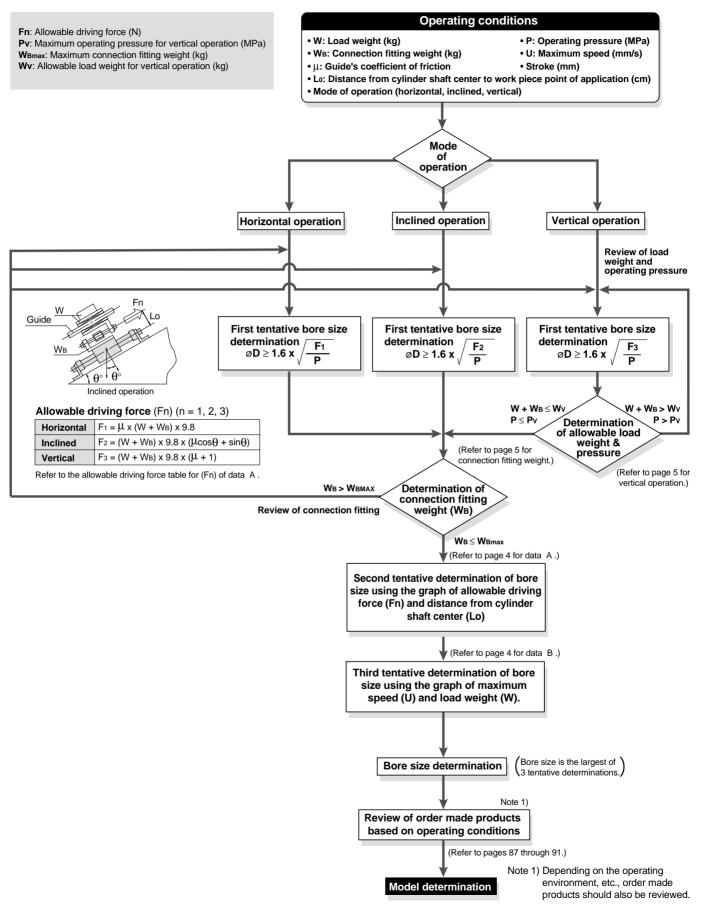
- 1. This mechanism is not intended for adjustment of the cushion effect (smooth start-up, soft stop). This mechanism is for matching of the cylinder's stroke end position to the mechanical stopper, etc., of a machine. (adjustment range from 0 to -2mm)
- Before adjustment is performed, shut off the drive air, release any residual pressure and implement measures to prevent dropping of work pieces, etc.

Stroke End Adjustment

(To ensure safety, implement with air shut down.)

⚠ Caution

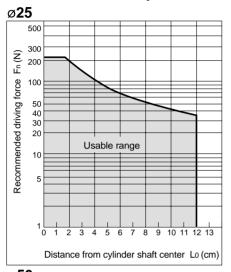

- 1. Loosen lock nut A
- 2. Insert a wrench into the hexagon socket of the adjustment screw, and turn it to the left or right, matching the cushion ring holder (stroke end) with the position of the external stopper by moving it backward or forward.
- After the stroke end adjustment is completed, retighten lock nut A, and apply high strength Loctite No. 262 or another comparable locking agent.

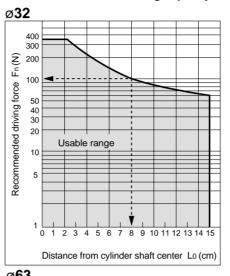

Adjustment screw hexagon socket

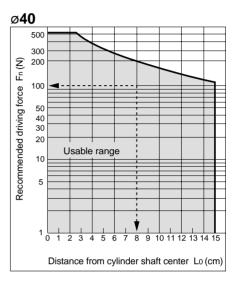
Model	Width across flats (mm)
REA25	5
REA32	5
REA40	6
REA50	8
REA63	8

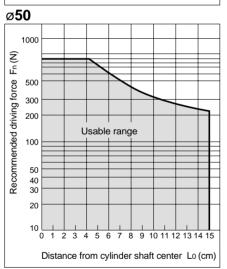
Lock nut A fastening torque

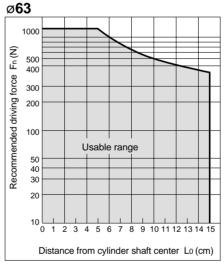
Model	Fastening torque (N·m)
REA25	1.2
REA32	1.2
REA40	2.1
REA50	3.4
REA63	3.4

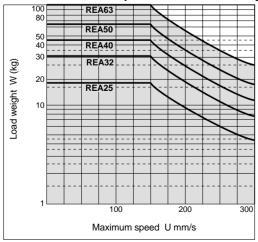




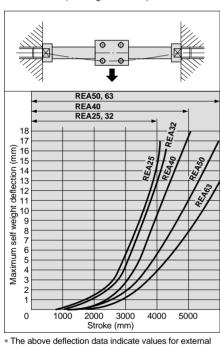

Design Parameters 1


Selection Method


<Data A: Distance from cylinder shaft center — Allowable driving capacity>



<Data B: Maximum speed — Load weight chart >


Design Parameters 2

Cylinder Self Weight Deflection

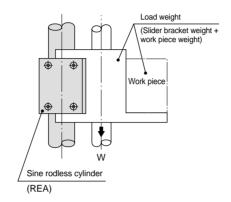
When the cylinder is mounted horizontally, deflection appears due to its own weight as shown in the data, and the longer the stroke the greater the amount of variation in the shaft centers.

Load platform Guide shaft O (0.2 to 0.5mm)

* The clearance C is determined by considering the cylinder's self weight deflection and the amount of discrepancy with respect to the other shaft. Normal value: (self weight deflection) +1.5 to 2mm

Max. Connection Fitting Weight

The REA (basic type) is not directly connected to the load, and is guided by another shaft (LM guide, etc.). Load connection fittings should be designed so that they do not exceed the weights given in the table below.


Maximum connection fitting weight WBmax (kg)

Maximum load (kg)		
1.2		
1.5		
2.0		
2.5		
3.0		

* Consult with SMC if weights greater than the above will be connected

Vertical Operation

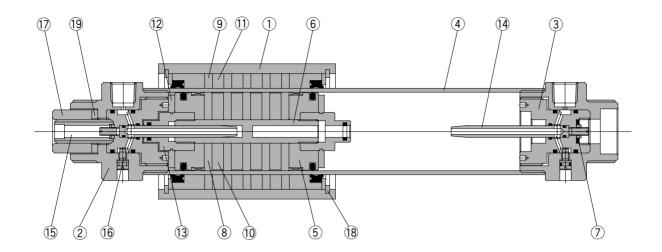
The load should be guided by a ball type bearing (LM quide, etc.). If a slide bearing is used, sliding resistance increases due to the load weight and load moment, which can cause malfunction.

Model	Allowable load weight Wv (kg)	Maximum operating pressure Pv (MPa)
REA25	18.5	0.65
REA32	30.0	0.65
REA40	47.0	0.65
REA50	75.0	0.65
REA63	115.0	0.65

Note) Use caution, as operation above the maximum operating pressure may result in dislocation of the

Intermediate Stops

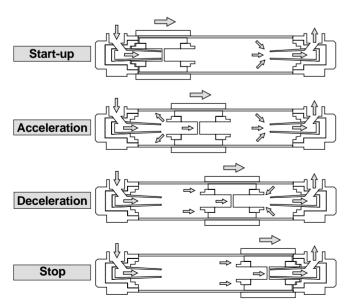
The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.


The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.

Cushion stroke

Model	Stroke (mm)	
REA25	30	
REA32	30	
REA40	35	
REA50	40	
REA63	40	

Series REA


Construction

Parts list

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Head cover	Aluminum alloy	Anodized
3	Cushion ring holder	Aluminum alloy	Chromated
4	Cylinder tube	Stainless steel	
5	Piston	Aluminum alloy	Chromated
6	Shaft	Stainless steel	
7	Lock nut B	Carbon steel	Nickel plated
8	Piston side yoke	Rolled steel	Zinc chromated
9	External slider side yoke	Rolled steel	Zinc chromated
10	Magnet A	Rare earth magnet	

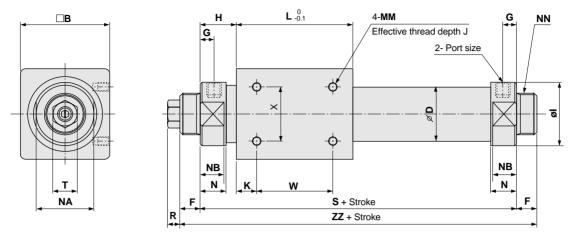
No.	Description	Material	Note
11	Magnet B	Rare earth magnet	
12	Bumper	Urethane rubber	
13	Cushion seal holder	Aluminum alloy	Chromated
14	Cushion ring	Brass	Electroless nickel plated
15	Adjustment screw	Carbon steel	Nickel plated
16	Stopper bolt	Carbon steel	Nickel plated
17	Lock nut A	Carbon steel	Nickel plated
18	Snap ring	Carbon tool steel	
19	Spring washer	Steel wire	

Operating Principle

Start-up/Acceleration

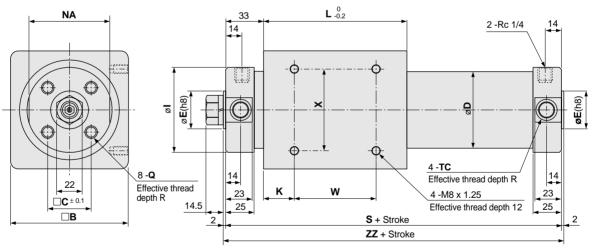
The driving air from the cylinder port passes through the inside of the cushion ring, and flows into the left chamber of the drive piston from the clearance between the cushion seal and the U-shaped groove in the outer surface of the cushion ring. Further, the exhaust air in the right chamber of the drive piston passes from inside the hollow cushion ring through the cylinder port and is released to the atmosphere by the drive solenoid valve.

When the differential pressure (thrust) generated on either side of the drive piston becomes larger than the starting resistance of the machinery, the drive piston begins to move to the right. As the drive piston moves to the right, the U-shaped groove in the outer surface of the cushion ring gradually becomes deeper, a flow corresponding to the drive speed of the drive piston flows into the left chamber of the drive piston, and the drive piston proceeds to accelerate. The U-shaped groove is machined into the cushion ring in such a way that this acceleration process can proceed smoothly (as a sine function).

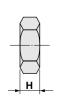

Deceleration/Stop

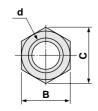
In conventional cushion mechanisms, when the cushion seal installed on the drive piston is pushed into the cushion ring at the right stroke end, the drive piston's right chamber is pressurized and a sudden braking force is generated. However, in a sine rodless cylinder, due to the U-shaped groove provided on the outer surface of the cushion ring, whose depth changes as a sine function, a large quantity of the air in the cushion chamber is discharged when the cushion seal is pushed in, and a sudden braking force is not generated. With the progression of the cushion stroke, the discharge flow from the cushion chamber is restricted, and therefore, a soft stop is achieved at the stroke end.

Dimensions


REA 25, 32, 40

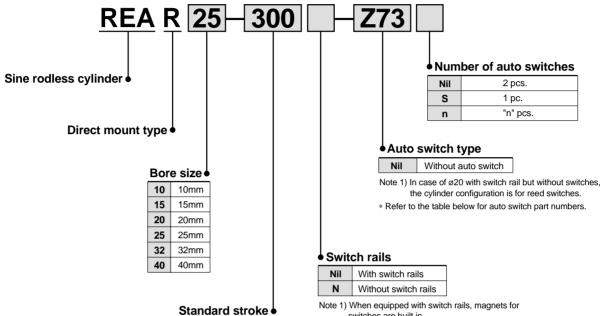
														(mm)
Model	Port size	В	D	F	G	Н	ı	K	L	MM x J	N	NA	NB	NN
REA25	Rc 1/8	46	27.8	13	8	20.5	34	10	70	M5 x 0.8 x 8	15	30	13	M26 x 1.5
REA32	Rc 1/8	60	35	16	9	22	40	15	80	M6 x 1.0 x 8	17	36	15	M26 x 1.5
REA40	Rc 1/4	70	43	16	11	29	50	16	92	M6 x 1.0 x 10	21	46	19	M32 x 2.0


Model	S	W	Х	ZZ	R	Т
REA25	111	50	30	137	8	17
REA32	124	50	40	156	8	17
REA40	150	60	40	182	10	19


REA 50, 63

														(mm)
Model	В	С	D	E(h8)	ı	K	L	NA	QxR	S	TC x R	W	Х	ZZ
REA50	86	32	53	30-0.033	58.2	25	110	55	M8 x 1.25 x 16	176	M12 x 1.25 x 7.5	60	60	180
REA63	100	38	66	32.0.039	72.2	26	122	69	M10 x 1.5 x 16	188	M14 x 1.5 x 11.5	70	70	192

Mounting nuts: 2pcs. packaged with each cylinder



					(mm)
Part No.	Applicable bore size (mm)	d	Н	В	С
SN-032B	ø 25 , ø 32	M26 x 1.5	8	32	37
SN-040B	ø 40	M32 x 2.0	11	41	47.3

Sine Rodless Cvlinder

Series REAR **Direct Mount Type** Ø10, Ø15, Ø20, Ø25, Ø32, Ø40

How to Order

Refer to the standard stroke table on page 9.

switches are built in.

Note 2) In case of ø15, magnets for switches are built in even when not equipped with switch rails.

$\textbf{Applicable auto switches} / _{\text{Refer to "Auto Switch Guide" (E274-A) for further details on auto switch units.} \\$ For Ø10, Ø15, Ø20

	7 Refer to pages of and of for addo switch circuit diagrams.																										
		- 1				Load vo	ltage	Auto	Lead wii	e length (m) Note 1)																
Туре	Special function	Electrical entry	light	Wiring (output) DC		OC	AC	switch model		3 (L)	5 (Z)	Applic	cable load														
Danel			No	0	24V	5, 12V	100V or less	A90	•	•	_	IC circuit															
Reed		Grommet	Grommet	Yes Yes	2 wire	24 V	12V	100V	A93	•	•	_	_	Relay, PLC													
SWILCI	•		163		165	163	163	163	165	165	res	Yes	Yes	res	res	165	165	162	res	3 wire (NPN equiv.)	_	5V	_	A96	•	•	_
Solid				3 wire (NPN)				F9N	•	•	_																
state		Grommet	Yes	3 wire (PNP)	24V	12V	_ [F9P	•	•	_	_	Relay, PLC														
switcl	1			2 wire				F9B	•	•	_																

Note 1) Lead wire length symbol 0.5m Nil (Example) F9N

For Ø25, Ø32, Ø40

	0	EL				Load vo	ltage	Auto	Lead wir	e length (m) Note 1)														
Туре	Type Special Electrical Ir entry		Indicator light	Wiring (output)	DC		AC	switch model	0.5 (Nil)	3 (L)	5 (Z)	Applic	able load												
Daad	Reed		Yes	3 wire	_	5V	_	Z76	•	•	_	IC circuit	_												
switch	Grommet Grommet	res	2 wire	24V	12V	100V	Z73	•	•	•		D													
SWILCII			No	2 WIIE	24 V	5, 12V	100V or less	Z80	•	•	_	IC circuit	Relay, PLC												
																3 wire (NPN)		5, 12V		Y59A	•	•	0	IC circuit	
Calla	_											3 wire (PNP)	1	5, 120		Y7P	•	•	0	io circuit					
Solid state		Grommet	Yes	2 wire	24V 12V			Y59B	•	•	0	_	Relay, PLC												
switch	switch Diagnostic		163	3 wire (NPN)	24 V	5, 12V		Y7NW	•	•	0	IC circuit	rtciay, r LO												
indi	indication (2 color			3 wire (PNP)		J, 12V		Y7PW	•	•	0	ic circuit													
indicator)				2 wire		12V		Y7BW	•	•	0	_													

Note 1) Lead wire length symbol 0.5m Nil (Example) Y59A Y59AL 3m L Y59AZ

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Specifications

Fluid	Air
Proof pressure	1.05MPa
Maximum operating pressure	0.7MPa
Minimum operating pressure	0.18MPa
Ambient and fluid temperature	−10 to 60°C
Piston speed	50 to 300mm/s
Lubrication	Non-lube
Stroke length tolerance	0 to 250st: $^{+1.0}_{0}$, 251 to 1000st: $^{+1.4}_{0}$, 1001st and up: $^{+1.8}_{0}$
Mounting	Direct mount type

Standard Strokes

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)	Maximum stroke with switch (mm)
10	150, 200, 250, 300	500	500
15	150, 200, 250, 300, 350, 400 450, 500	1000	750
20	000 050 000 050 400 450	1500	1000
25 32	200, 250, 300, 350, 400, 450 500, 600, 700, 800	2000	1500
40	200, 250, 300, 350, 400, 450 500, 600, 700, 800, 900, 1000	2000	1500

Note) Intermediate strokes can be arranged in 1mm increments.

Magnetic Holding Force

						(N)
Bore size (mm)	10	15	20	25	32	40
Holding force	53.9	137	231	363	588	922

Weights

(kg)

							(**3)
Item	Bore size (mm)	10	15	20	25	32	40
Basic	REAR□ (with switch rail)	0.111	0.277	0.440	0.660	1.27	2.06
weight (for 0st)	REAR□-□N (without switch rail)	0.080	0.230	0.370	0.580	1.15	1.90
	ht per 50mm stroke d with switch rail)	0.034	0.045	0.071	0.083	0.113	0.133
Additional weig (when not equip	ht per 50mm stroke oped with switch rail)	0.014	0.020	0.040	0.050	0.070	0.080

Calculation method/Example: REAR25-500 (with switch rail) Basic weight ... 0.660kg, Additional weight ... 0.083kg/50mm, Cylinder stroke ... 500mm 0.660 + 0.083 x 500 + 50 = 1.49kg

Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Mounting

△ Caution

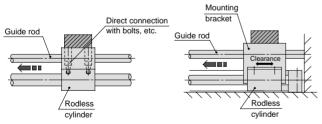
 Take care to avoid nicks or other damage on the outside surface of the cylinder tube.

This can lead to damage of the scraper and wear ring, which in turn can cause malfunction.

2. Pay attention to the rotation of the external slider.

Rotation should be controlled by connecting it to another shaft (linear guide, etc.).

Do not operate with the magnetic coupling out of position.


In case the magnetic coupling is out of position, push the external slider back into the correct position by hand at the end of the stroke (or correct the piston slider with air pressure).

- 4. The cylinder is mounted with bolts through the mounting holes in the end covers. Be sure they are tightened securely.
- 5. Be sure that both end covers are secured to the mounting surface before operating the cylinder.

Avoid operation with the external slider secured to the surface.

6. Do not apply a lateral load to the external slider.

When a load is mounted directly to the cylinder, variations in the alignment of each shaft center cannot be offset, which results in the generation of a lateral load that can cause malfunction. The cylinder should be operated using a connection method which allows for shaft alignment variations and deflection due to the cylinder's own weight. A drawing of a recommended mounting is shown in Figure 2.

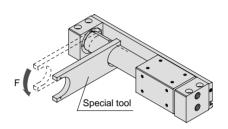
Variations in the load and cylinder shaft alignment cannot be offset and may result in a malfunction.

Shaft alignment variations are offset by providing clearance between the mounting bracket and cylinder. Moreover, the mounting bracket is extended above the cylinder shaft center, so that the cylinder is not subjected to moment.

Figure 1. Incorrect mounting

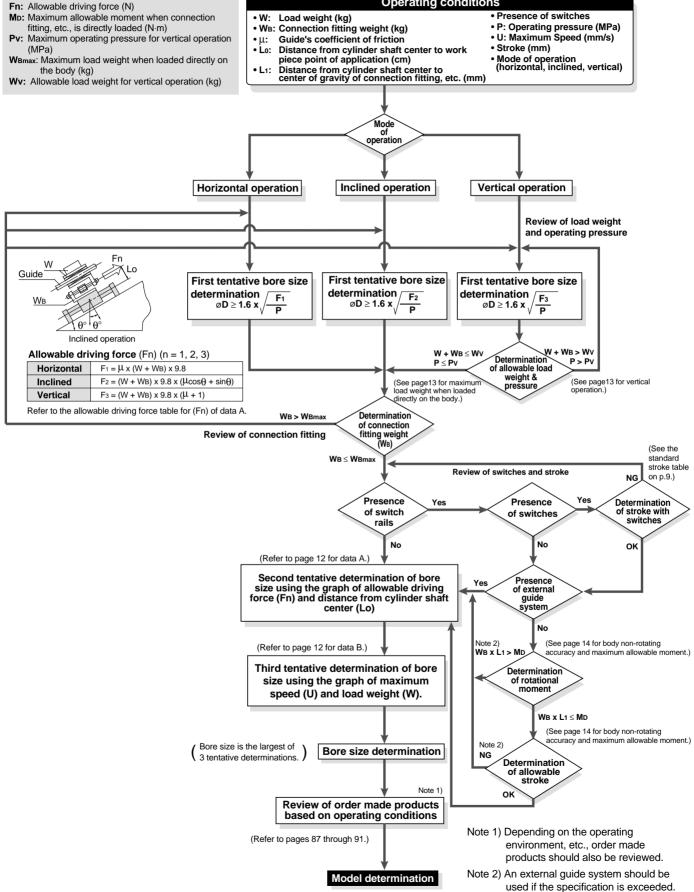
10

Figure 2. Recommended mounting


7. Use caution regarding the allowable load weight when operating in a vertical direction.

The allowable load weight when operating in a vertical direction (reference values on page 13) is determined by the model selection method. However, if a load greater than the allowable value is applied, the magnetic coupling may break and there is a possibility of dropping the load. When using this type of application, contact SMC regarding the operating conditions (pressure, load, speed, stroke, frequency, etc.).

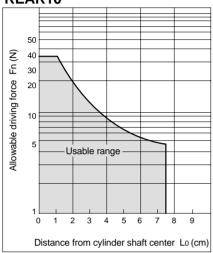
Disassembly & Maintenance


⚠ Caution

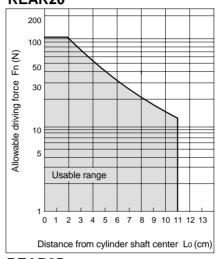
1. Special tools are necessary for disassembly.

Special tool number list

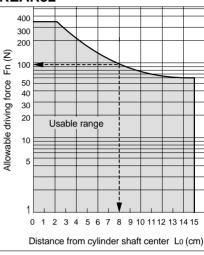
No.	Applicable bore size (mm)
CYRZ-V	10, 15, 20
CYRZ-W	25, 32, 40

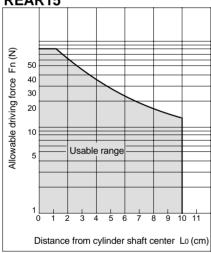

Operating conditions

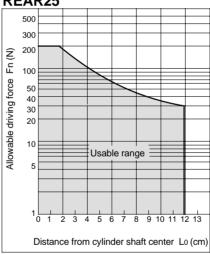
Design Parameters 1

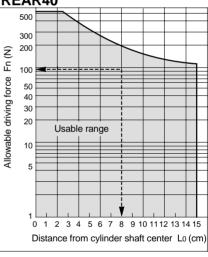

Selection Method

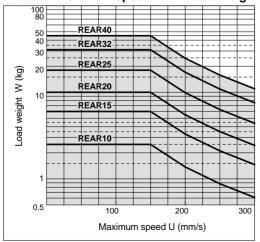
<Data A: Distance from cylinder shaft center — Allowable driving capacity>




REAR20

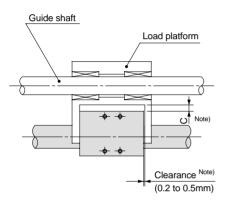

REAR32

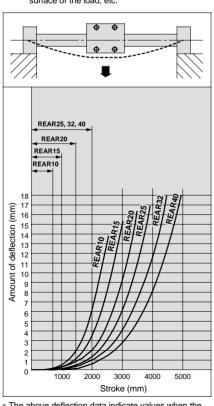



REAR25

REAR40

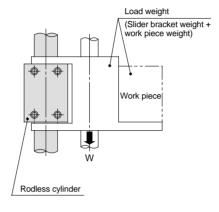
<Data B: Maximum speed —— Load weight chart >




Design Parameters 2

Cylinder Self Weight Deflection

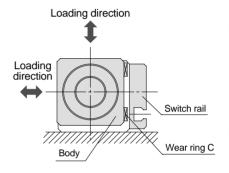
When the cylinder is mounted horizontally, deflection appears due to its own weight as shown in the data, and the longer the stroke, the greater the amount of variation in the shaft centers. Therefore, a connection method should be considered which allows for this variation as shown in the drawing.


Note) Referring to the self weight deflection in the figure below, provide clearance so that the cylinder is able to operate smoothly through the full stroke within the minimum operating pressure range, without touching the mounting surface or the load, etc.

* The above deflection data indicate values when the

Vertical Operation

The load should be guided by a ball type bearing (LM guide, etc.). If a slide bearing is used, sliding resistance will increase due to the load weight and moment, and this can cause malfunction.


Cylinder bore size (mm)	Model	Allowable load weight Wv (kg)	Max. operating pressure Pv (MPa)
10	REAR10	2.7	0.55
15	REAR15	7.0	0.65
20	REAR20	11.0	0.65
25	REAR25	18.5	0.65
32	REAR32	30.0	0.65
40	REAR40	47.0	0.65

Note) Use caution, as operation above the maximum operating pressure can result in breaking of the

Max. Load Weight when Loaded Directly on Body

When the load is applied directly to the body, it should be no greater than the maximum values shown in the table below.

Model	Maximum load weight Wamax (kg)
REAR10	0.4
REAR15	1.0
REAR20	1.1
REAR25	1.2
REAR32	1.5
REAR40	2.0

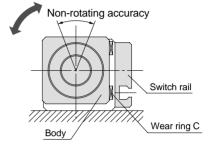
13

Design Parameters 3

Intermediate Stops

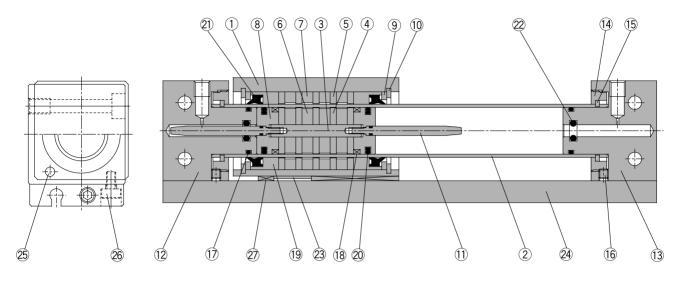
The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.

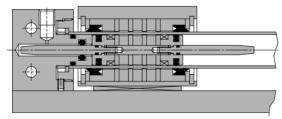
The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.


Cushion Stroke

Model	Stroke (mm)
REAR10	20
REAR15	25
REAR20	30
REAR25	30
REAR32	30
REAR40	35

Body Non-rotating Accuracy and Maximum Allowable Moment (with Switch Rail) (Reference Values)


Reference values for non-rotating accuracy and maximum allowable moment at stroke end are indicated below.


Bore size (mm)	Non-rotating accuracy (°)	Max. allowable moment (M _D) (N⋅m)	Allowable stroke (mm)
10	6.0	0.05	100
15	4.5	0.15	200
20	3.7	0.20	300
25	3.7	0.25	300
32	3.1	0.40	400
40	2.8	0.62	400

- Note 1) Avoid operations where rotational torque (moment) is applied. In such a case, the use of an external guide is recommended.
- Note 2) The above reference values will be satisfied within the allowable stroke ranges. However, caution is necessary because as the stroke becomes longer the inclination (rotation angle) within the stroke can be expected to increase.
- Note 3) When a load is applied directly to the body, the loaded weight should be no greater than the allowable load weights on page 13.

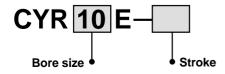
Construction/ø10, ø15

REAR10

Parts list

No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Cylinder tube	Stainless steel	
3	Shaft	Stainless steel	
4	Piston side yoke	Rolled steel plate	Zinc chromated
5	External slider side yoke	Rolled steel plate	Zinc chromated
6	Magnet A	Rare earth magnet	
7	Magnet B	Rare earth magnet	
8	Piston	Brass	Electroless nickel plated
9	Spacer	Rolled steel plate	Nickel plated
10	Snap ring	Carbon tool steel	Nickel plated
11	Cushion ring	Stainless steel	
12	End cover A	Aluminum alloy	Hard anodized
13	End cover B	Aluminum alloy	Hard anodized
14	Attachment ring	Aluminum alloy	Hard anodized
15	C tune onen ring for chaft	Stainless steel	REAR10
10	C type snap ring for shaft	Hard steel wire	Nickel plated (REAR15)
16	Hexagon socket head set screw	Chromium steel	Nickel plated
17*	Cylinder tube gasket	NBR	

Parts list


No.	Description	Material	Note
18*	Wear ring A	Special resin	
19*	Wear ring B	Special resin	
20*	Piston seal	NBR	
21*	Scraper	NBR	
22*	Cushion seal	NBR	
23	Magnetic shielding plate	Rolled steel plate	Chromated
24	Switch rail	Aluminum alloy	Clear anodized
25	Magnet	Rare earth magnet	
26	Hexagon socket head screw	Chromium steel	Nickel plated
27*	Wear ring C	Special resin	

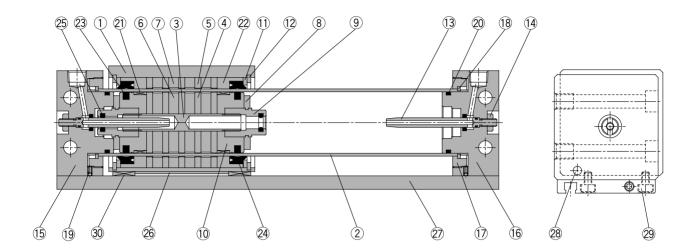
 $[\]ast$ Seal kits are sets consisting of numbers 17 through 22 above, and can be ordered using the order number for each bore size.

Replacement parts: Seal kits

Bore size (mm)	Order no.	Content
10	REAR10-PS	Above numbers
15	REAR15-PS	17, 18, 19, 20, 21, 22, 27

Switch Rail Accessory Kits

Switch rail accessory kits


Bore size (mm)	Kit no.	Content
10	CYR10E-□	Above numbers 24, 25, 26, 27
15	CYR15E-□	Above numbers 23, 24, 26, 27 Note 2)

Note 1) \square indicates the stroke.

Note 2) ø15 has internal magnets in the body.

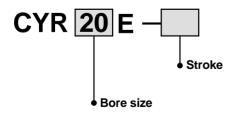
Series REAR

Construction/ø20 to ø40

Parts list

No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Cylinder tube	Stainless steel	
3	Shaft	Stainless steel	
4	Piston side yoke	Rolled steel plate	Zinc chromated
5	External slider side yoke	Rolled steel plate	Zinc chromated
6	Magnet A	Rare earth magnet	
7	Magnet B	Rare earth magnet	
8	Bumper	Urethane rubber	
9	Cushion seal holder	Aluminum alloy	Chromated
10	Piston	Aluminum alloy	Chromated
11	Spacer	Rolled steel plate	Nickel plated
12	Snap ring	Carbon tool steel	Nickel plated
13	Cushion ring	Brass	Electroless nickel plated (REAR 32, 40)
		Stainless steel	REAR 20, 25
14	Lock nut B	Carbon steel	Nickel plated
15	End cover A	Aluminum alloy	Hard anodized
16	End cover B	Aluminum alloy	Hard anodized
17	Attachment ring	Aluminum alloy	Hard anodized
18	C type snap ring for shaft	Stainless steel	REAR 25, 32
10	C type snap mig for snart	Hard steel wire	Nickel plated (REAR 20, 40)
19	Hexagon socket head set screw	Chromium steel	Nickel plated
20*	Cylinder tube gasket	NBR	

Parts list

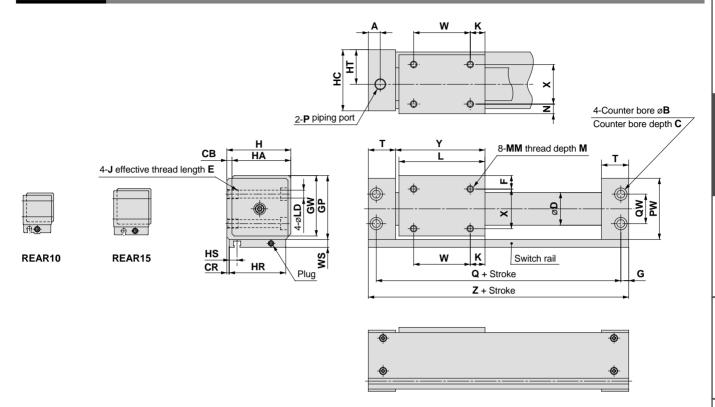

No. Description Material Note 21* Wear ring A Special resin 22* Wear ring B Special resin 23* Piston seal NBR 24* Scraper NBR 25* Cushion seal NBR	
22* Wear ring B Special resin 23* Piston seal NBR 24* Scraper NBR	
23* Piston seal NBR 24* Scraper NBR	
24* Scraper NBR	
25* Cushion seal NBR	
26 Magnetic shielding plate Rolled steel plate Chromat	ted
27 Switch rail Aluminum alloy Clear anod	dized
28 Magnet Rare earth magnet	
29 Hexagon socket head screw Chromium steel Nickel pla	ated
30* Wear ring C Special resin	

st Seal kits are sets consisting of numbers 20 through 25 and 30 above, and can be ordered using the kit number for each bore size.

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Content
20	REAR20-PS	
25	REAR25-PS	Above numbers
32	REAR32-PS	20, 21, 22, 23, 24, 25, 30
40	REAR40-PS	

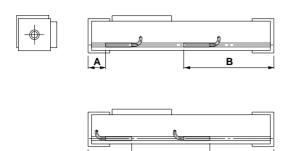
Switch Rail Accessory Kits


Switch rail accessory kits

Bore	e size (mm)	Kit no.	Content
20	For reed switch	CYR20E-□	
20	For solid state	CYR20EN-□	Above numbers
	25	CYR25E-□	26, 27, 28, 29, 30
	32	CYR32E-□	
	40	CYR40E-□	

Note 1) \square indicates the stroke.

Dimensions



																	(mm)
Model	Α	В	С	СВ	CR	D	F	G	GP	GW	Н	НА	НС	HR	HS	HT	JxE
REAR10	10.5	6.5	3.2	2	0.5	12	6.5	6	27	25.5	26	24	25	24	5	14	M4 x 0.7 x 6
REAR15	12	8	4.2	2	0.5	17	8	7	33	31.5	32	30	31	30	8.5	17	M5 x 0.8 x 7
REAR20	9	9.5	5.2	3	1	22.8	9	6	39	37.5	39	36	38	36	7.5	21	M6 x 1 x 8
REAR25	8.5	9.5	5.2	3	1	27.8	8.5	6	44	42.5	44	41	43	41	6.5	23.5	M6 x 1 x 8
REAR32	10.5	11	6.5	3	1.5	35	10.5	7	55	53.5	55	52	54	51	7	29	M8 x 1.25 x 10
REAR40	10	11	6.5	5	2	43	13	7	65	63.5	67	62	66	62	8	36	M8 x 1.25 x 10

Model	K	L	LD	M	MM	N	Р	PW	Q	QW	Т	W	ws	Х	Y	Z
REAR10	9	38	3.5	4	M3 x 0.5	4.5	M5 x 0.8	26	68	14	19.5	20	8	15	39.5	80
REAR15	14	53	4.3	5	M4 x 0.7	6	M5 x 0.8	32	84	18	21	25	7	18	54.5	98
REAR20	11	62	5.6	5	M4 x 0.7	7	Rc 1/8	38	95	17	20.5	40	7	22	64	107
REAR25	15	70	5.6	6	M5 x 0.8	6.5	Rc 1/8	43	105	20	21.5	40	7	28	72	117
REAR32	13	76	7	7	M6 x 1	8.5	Rc 1/8	54	116	26	24	50	7	35	79	130
REAR40	15	90	7	8	M6 x 1	11	Rc 1/4	64	134	34	26	60	7	40	93	148

Series REAR

Proper Auto Switch Mounting Position for Stroke End Detection

ø10 to ø20

ø25 to ø40

(mm) Auto switch D-A9□ D-A9□ D-A9□ D-F9 D-F9□ D-F9□ D-A9□ D-F9□ 10 28 32 48 44 28 32 15 17.5 21.5 76.5 72.5 56.5 60.5 20 19.5 23.5 87.5 83.5 39.5 35.5 67.5 71.5

Note) Auto switches cannot be installed in Area C in the case of ø15.

Auto Switch Operation Range

Auto switch D-Z7□ D-Z8□ Bore size D-A9□ D-F9□ (mm) D-Y7□W 10 13 15 8 5 4 20 6 9 25 32 9 6 40 11 6

Note 1) Switches cannot be mounted in some cases. Note 2) Operating ranges are standards including

(mm)

hysteresis, and are not guaranteed. Large variations may occur depending on the surrounding environment (variations on the order of ±30%).

Auto switch		4	ı	В	(3		D		
Bore size (mm)	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W		
25	18	18	97	99	43	43	74	74		
32	21.5	21.5	108.5	108.5	46.5	46.5	83.5	83.5		
40	23.5	23.5	124.5	124.5	48.5	48.5	99.5	99.5		

Auto Switch Mounting

When mounting auto switches, they should be inserted into the cylinder's switch groove from the direction shown in the drawing on the right. After setting in the mounting position, use a flat head watchmakers screw driver to tighten the mounting screw which is included. Note) When tightening the auto switch mounting screw, use a watchmakers screw driver with a handle about 5 to 6mm in Furthermore, the tightening torque should be approximately 0.05 to $0.1N \cdot m.$ As a rule, it can be turned about 90° past the point at which tightening can be felt. Flat head watchmakers screw driver Auto switch ø5 to ø6

Auto Switch Specifications

(1) Switches (switch rail) can be added to the standard type (without switch rail). Switch rail accessory kits are mentioned on pages 15 and 16 and can be ordered together with auto switches.

Switch mounting screw (M2.5 x 4/)

(2) Refer to the separate disassembly instructions for switch magnet installation procedures.

Applicable auto switches

Refer to "Auto Switch Guide" (E-274-A) for further details on auto switch units.

ДРР	cable auto switches/ Refer	to pages 64 a	101 65 101	auto switch circu	it ulay	iaiiis.									
						Load vo	oltage	Auto swite	ch model	Lead v	vire l	ength	Note 1) 1 (m)		
Туре	Special function	Electrical entry	Indicator light	Wiring (output)		DC	AC	Electrica direct	al entry	0.5 (Nil)	3	5	None (N)	Applicab	le load
S				3 wire (NPN equiv.)	_	5V	_	—	A76H	•	•	_	_	IC circuit	_
호		Grommet	Yes		_	_	200V	A72	A72H	•	•	_	_		
Reed switches	<u> </u>	Crommot				12V	100V	A73	A73H	•	•	•	—	_	
<u>8</u>			No	2 wire	24V	5V, 12V	100V or less	A80	A80H	•	•	_	_	IC circuit	Relay, PLC
Rec		Connector	Yes	Yes		12V		A73C	_	•	•	•	•		120
		Connector	No	5	5V, 12V	24V or less	A80C		•	•	•	•	IC circuit		
		Grommet		3 wire (NPN)		EV 40V		F7NV	F79	•	•	0	_	IC circuit	
	<u></u>			3 wire (PNP)		5V, 12V		F7PV	F7P	•	•	0	_	ic circuit	
ဟ္သ	_			2 wire	12V		F7BV	J79	•	•	0	_			
che		Connector		Z WIIG	120		J79C		•	•	•	•			
switches				3 wire (NPN)		5V, 12V		F7NWV	F79W	•	•	0	—	10 -::	
S O	Diagnostic indication (2 color indicator)			3 wire (PNP)	24V	l '	_	_	F7PW	•	•	0	—	IC circuit	Relay,
stat	(2 color maleator)		Yes	2 wire	240	12V		F7BWV	J79W	•	•	0	_	_	PLC
<u>.5</u>	Water resistant (2 color indicator)	Grommet		Z WIIC		12 V		_	F7BA	_	•	0	—		
Solid state	With timer			3 wire (NPN)		5V, 12V		_	F7NT	- •	•	0	_	10	
	With diagnostic output (2 color indicator)					JV, 12V		_	F79F	•	•	0	_	IC circuit	
	Latch type with diagnostic output (2 color indicator)			4 wire (NPN)		_		_	Note 3) F7LF	•	•	0	_	_	

Note 1) Lead wire length symbol 0.5m Nil (Example) A80C 3m L (Example) A80CL 5m Z (Example) A80CZ None N (Example) A80CN

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-F7LF cannot be mounted on bore size ø10.

多SMC

Series REAS

Specifications

Fluid	Air
Proof pressure	1.05MPa
Maximum operating pressure	0.7MPa
Minimum operating pressure	0.18MPa
Ambient and fluid temperature	−10 to 60°C
Piston speed	50 to 300mm/s
Lubrication	Non-lube
Stroke length tolerance	0 to 250st: $^{+1.0}_{0}$, 251 to 1000st: $^{+1.4}_{0}$, 1001st and up: $^{+1.8}_{0}$

Standard Strokes

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)
10	150, 200, 250, 300	500
15	150, 200, 250, 300, 350, 400 450, 500	750
20	000 050 000 050 400 450	1000
25 32	200, 250, 300, 350, 400, 450 500, 600, 700, 800	1500
40	200, 250, 300, 350, 400, 450 500, 600, 700, 800, 900, 1000	1500

Note) Intermediate strokes can be arranged in 1mm increments.

Magnetic Holding Force

						(N)
Bore size (mm)	10	15	20	25	32	40
Holding force	53.9	137	231	363	588	922

Weights

						(kg)
Bore size (mm)	10	15	20	25	32	40
Basic weight	0.48	0.91	1.48	1.84	3.63	4.02
Additional weight per 50mm stroke	0.074	0.104	0.138	0.172	0.267	0.406

Calculation method/Example: REAS32-500 Basic weight 3.63kg Additional weight 0.267/50mm Cylinder stroke ... 500mm 3.63 + 0.267 x 500 \div 50 = 6.3kg

Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Operation

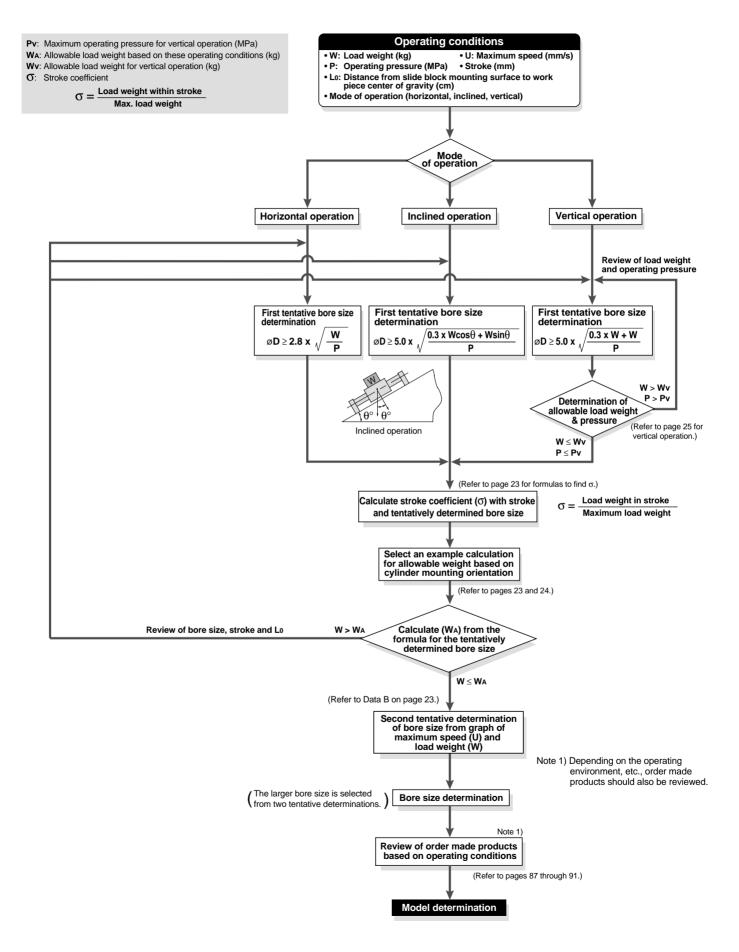
⚠ Warning

1. Be aware of the space between the plates and the slide block.

Take sufficient care as fingers and hands, etc., may be injured if caught while the cylinder is in operation.

2. Do not apply a load to a cylinder, which is greater than the allowable value stated in the "model selection pages".

Mounting


⚠ Caution

1. Avoid operation with the external slider fixed to the mounting surface.

The cylinder should be operated with the plates fixed to the mounting surface.

Perform mounting so that the external slider will operate through the entire stroke at the minimum operating pressure.

If the mounting surface is not flat, the guides will be warped, increasing the minimum operating pressure and causing premature wear of the bearings. Therefore, mounting should be performed so that the external slider will operate through the entire stroke at the minimum operating pressure. A mounting surface with a high degree of flatness is desirable, but in cases where this is not possible, adjust with shims, etc.

Design Parameters 1

How to Find σ when Selecting the Allowable Load Weight

Since the maximum load weight with respect to the cylinder stroke changes as shown in the table below, σ should be considered as a coefficient determined in accordance with each stroke.

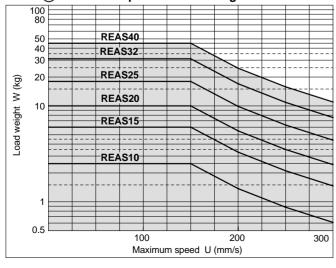
Example) for REAS25-650

- (1) Maximum load weight = 20kg
- (2) Load weight for 650st = 13.6kg

(3)
$$\sigma = \frac{13.6}{20} = 0.68$$
 is the result.

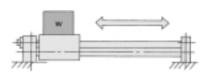
Calculation formula for σ ($\sigma \le 1$)

ST: Stroke (mm)


Model	REAS10	REAS15	REAS20
σ=	$\frac{10^{(0.86-1.3\times10^{-3}\times\text{ST})}}{3}$	$\frac{10^{(1.5-1.3\times10^{-3}\timesST)}}{7}$	10 ^(1.71–1.3 x 10⁻³ x ST)
Model	REAS25	REAS32	REAS40

Model	REAS25	REAS32	REAS40
σ=	10 ^(1.98 - 1.3 x 10⁻³ x ST)	10 ^(2.26 - 1.3 x 10⁻³ x ST)	10 ^(2.48 - 1.3 x 10⁻³ x ST)
	20	30	50

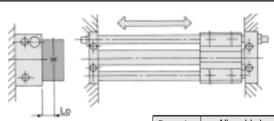
Note) Calculate with σ = 1 for all applications up to \varnothing 10–300mmST, \varnothing 15–500mmST, \varnothing 20–500mmST, \varnothing 25–500mmST, \varnothing 32–600mmST and \varnothing 40–600mmST.



<Data (B): Maximum speed—Load weight chart>

Examples of Allowable Load Weight Calculation Based on Cylinder Mounting Orientation

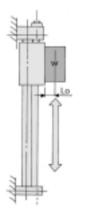
1. Horizontal operation (floor mounting)


Maximum load weight (center of slide block)

(kg)

Bore size (mm)	10	15	20	25	32	40
Max. load weight (kg)	3	7	12	20	30	50
Stroke (max)	to 300st	to 500st	to 500st	to 500st	to 600st	to 600st

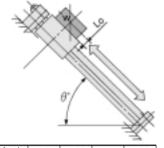
The above maximum load weight values will change with the stroke length for each cylinder size, due to limitation from warping of the guide shafts. (Take note of the coefficient \mathbf{O} .) Moreover, depending on the operating direction, the allowable load weight may be different from the maximum load weight.


2. Horizontal operation (wall mounting)

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	Allowable load weight WA (kg)
10	$\frac{\text{O} \cdot 12.0}{8.4 + 2\text{Lo}}$
15	$\frac{\text{O} \cdot 36.4}{10.6 + 2\text{Lo}}$
20	$\frac{\text{O}\cdot74.4}{12 + 2\text{Lo}}$
25	$\frac{\text{G}\cdot 140}{13.8 + 2\text{Lo}}$
32	<u>σ·258</u> 17 + 2Lo
40	$\frac{\text{O} \cdot 520}{20.6 + 2\text{Lo}}$

3. Vertical operation


Bore size (mm)	Allowable load weight WA (kg)
10	<u>σ·4.16</u> 2.2 + Lo
15	<u>σ·13.23</u> 2.7 + Lo
20	<u>σ·26.8</u> 2.9 + Lo
25	$\frac{\text{O}\cdot44.0}{3.4 + \text{Lo}}$
32	$\frac{\text{O.88.2}}{\text{4.2 + Lo}}$
40	<u>σ·167.8</u> 5.1 + Lo

Lo: Distance from mounting surface to load center of gravity (cm) Note) A safety factor should be considered to prevent dropping.

Design Parameters 2

Examples of Allowable Load Weight Calculation Based on Cylinder Mounting Orientation

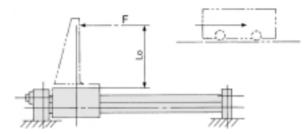
4. Inclined operation (in operating direction)

Angle	to 45°	to 60°	to 75°	to 90°
k	1	0.9	0.8	0.7

Angle coefficient (k): $k = [to 45^{\circ} (= \theta)] = 1$, $[to 60^{\circ}] = 0.9$, $[to 75^{\circ}] = 0.8$.

 $\label{eq:condition} \mbox{[to 90°] = 0.7}$ Lo: Distance from mounting surface to load center of gravity (cm)

$\begin{array}{c|c} \text{Bore size} \\ \text{(mm)} \end{array} \begin{array}{c} \text{Allowable load} \\ \text{weight WA (kg)} \\ \hline \\ \textbf{10} \\ \hline \\ \textbf{15} \\ \hline \\ \textbf{20} \\ \hline \\ \textbf{20} \\ \hline \\ \textbf{25} \end{array} \begin{array}{c} \underline{\sigma \cdot 10.5 \cdot K} \\ \overline{3.5 \cos \theta + 2 (2.2 + \text{Lo}) \sin \theta} \\ \overline{\sigma \cdot 35 \cdot K} \\ \overline{5 \cos \theta + 2 (2.7 + \text{Lo}) \sin \theta} \\ \hline \\ \underline{\sigma \cdot 72 \cdot K} \\ \overline{6 \cos \theta + 2 (2.9 + \text{Lo}) \sin \theta} \\ \hline \\ \underline{\sigma \cdot 120 \cdot K} \\ \overline{6 \cos \theta + 2 (3.4 + \text{Lo}) \sin \theta} \\ \hline \end{array}$

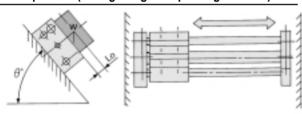

σ·210·K

 $7\cos\theta + 2(4.2 + \text{Lo})\sin\theta$

σ·400⋅K

 $8\cos\theta + 2(5.1 + Lo)\sin\theta$

7. Horizontal operation (pushing load, pusher)

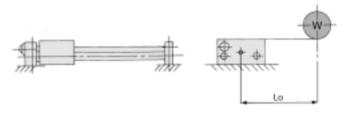


F: Drive (from slide block to position Lo) resistance force (kg) Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	10	15	20
Allowable load weight Wa (kg)	$\frac{\sigma \cdot 5.25}{2.2 + Lo}$	$\frac{\sigma \cdot 17.5}{2.7 + Lo}$	<u> </u>
Bore size (mm)	25	32	40

Bore size (mm)	25	32	40
Allowable load weight WA (kg)	<u>σ⋅60</u>	<u>σ·105</u>	<u>σ·200</u>
	3.4 + Lo	4.2 + Lo	5.1 + Lo

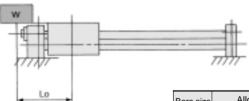
5. Inclined operation (at a right angle to operating direction)



40

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	Allowable load weight WA (kg)
10	σ ·12.0
10	$4 + 2 (2.2 + Lo) \sin \theta$
15	σ·36.4
15	$5.2 + 2 (2.7 + Lo) \sin \theta$
20	σ·74.4
20	$6.2 + 2 (2.9 + Lo) \sin \theta$
25	σ·140
23	$7 + 2 (3.4 + Lo) \sin \theta$
32	σ·258
32	8.6 + 2 (4.2 + Lo) sin θ
40	σ⋅520
40	$10.4 + 2 (5.1 + Lo) \sin \theta$


8. Horizontal operation (load, lateral offset Lo)

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	10	15	20
Allowable load weight WA (kg)	<u>σ⋅8.40</u> 4 + Lo	<u>σ·25.48</u> 5.2 + Lo	<u>σ⋅52.1</u> 6.2 + Lo
Bore size (mm)	25	32	40

6. Load center offset in operating direction (Lo)

Lo: Distance from slide block center to load center of gravity (cm)

Bore size (mm)	Allowable load weight WA (kg)
10	σ⋅5.25
10	Lo + 3.5
15	_ σ ·17.5
13	Lo + 5.0
20	σ⋅36
20	Lo + 6.0
25	_ σ⋅60
23	Lo + 6.0
32	<u></u> σ⋅105
32	Lo + 7.0
40	<u></u> σ ⋅200
40	Lo + 8.0

Design Parameters 3

Vertical Operation

When operating a load vertically, it should be operated within the allowable load weights and maximum operating pressures shown in the table below. Use caution, as operating above the prescribed values may lead to dropping of the load.

Bore size (mm)	Model	Allowable load weight Wv (kg)	Max. operating pressure Pv (MPa)
10	REAS10	2.7	0.55
15	REAS15	7.0	0.65
20	REAS20	11.0	0.65
25	REAS25	18.5	0.65
32	REAS32	30.0	0.65
40	REAS40	47.0	0.65

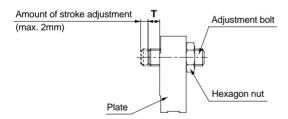
Note) Use caution, as there is a possibility of breaking the magnetic coupling if operated above the maximum operating pressure.

Intermediate Stops

The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.

The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.

Cushion stroke

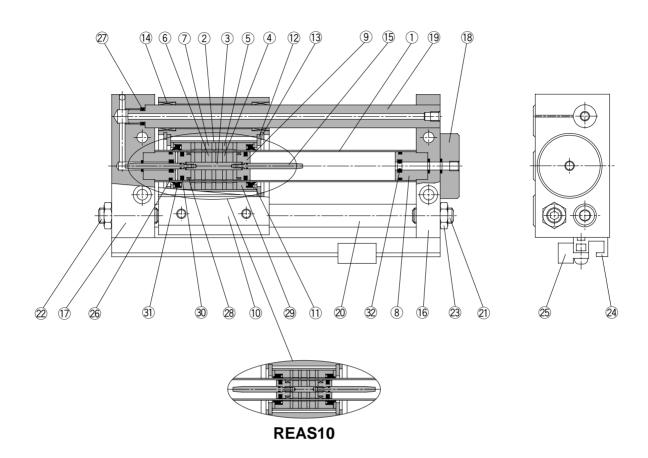

Model	Stroke (mm)
REAS10	20
REAS15	25
REAS20	30
REAS25	30
REAS32	30
REAS40	35

Stroke Adjustment

The adjustment bolt is adjusted to the optimum position for smooth acceleration and deceleration at the time of shipment, and should be operated at the full stroke. When stroke adjustment is necessary, the maximum amount of adjustment on one side is 2mm. (Do not adjust more than 2mm, as it will not be possible to obtain smooth acceleration and deceleration.)

Stroke Adjustment

Loosen the hexagon nut, and after performing the stroke adjustment from the plate side with a hexagon wrench, retighten and secure the hexagon nut.



Adjustment Bolt Position (at Shipment), Hexagon Nut Tightening Torque

Model	T (mm)	Tightening torque (N·m)	
REAS10	1	4.67	
REAS15	1	1.67	
REAS20	1.5	3.14	
REAS25	1.5	10.8	
REAS32	3	22.5	
REAS40	2	23.5	

Series REAS

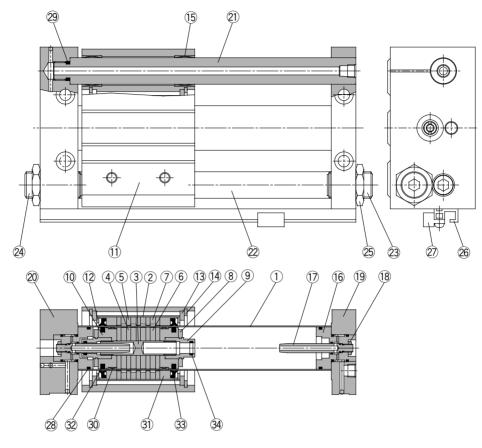
Construction/ø10, ø15

Parts list

No.	Description	Material	Note
1	Cylinder tube	Stainless steel	
2	External slider tube	Aluminum alloy	
3	Shaft	Stainless steel	
4	Piston side yoke	Rolled steel plate	Zinc chromated
5	External slider side yoke	Rolled steel plate	Zinc chromated
6	Magnet A	Rare earth magnet	
7	Magnet B	Rare earth magnet	
8	Cushion seal holder	Aluminum alloy	Anodized
9	Piston	Brass	Electroless nickel plated
10	Slide block	Aluminum alloy	Hard anodized
11	Spacer	Rolled steel plate	Nickel plated
12	Slider spacer	Rolled steel plate	Nickel plated
13	Snap ring	Carbon tool steel	Nickel plated
14	Bushing	Oil retaining bearing material	
15	Cushion ring	Stainless steel	
16	Plate A	Aluminum alloy	Hard anodized

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
10	REAS10-PS	Above numbers
15	REAS15-PS	26, 27, 28, 29, 30, 31, 32


Parts list

No.	Description	Material	Note
17	Plate B	Aluminum alloy	Hard anodized
18	Port cover	Aluminum alloy	Hard anodized
19	Guide shaft A	Carbon steel	Hard chrome plated
20	Guide shaft B	Carbon steel	Hard chrome plated
21	Adjustment bolt A	Chromium molybdenum steel	Nickel plated
22	Adjustment bolt B	Chromium molybdenum steel	Nickel plated
23	Hexagon nut	Carbon steel	Nickel plated
24	Switch mounting rail	Aluminum alloy	
25	Auto switch	-	
26*	Cylinder tube gasket	NBR	
27*	Guide shaft gasket	NBR	
28*	Wear ring A	Special resin	
29*	Wear ring B	Special resin	
30*	Piston seal	NBR	
31*	Scraper	NBR	
32*	Cushion seal	NBR	

st Seal kits are sets consisting of items 26 through 32 above, and can be ordered using the kit number for each bore size.

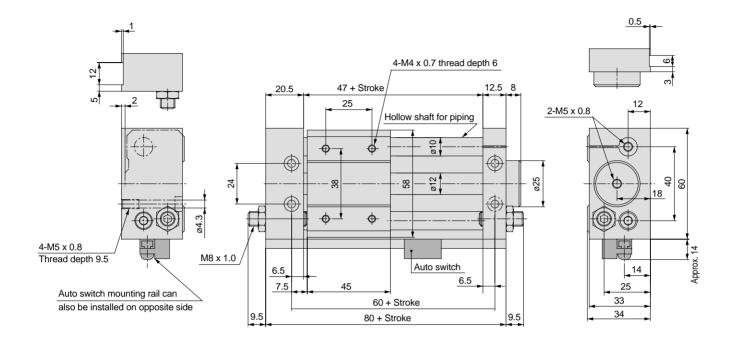
Construction/ø20 to ø40

Parts list

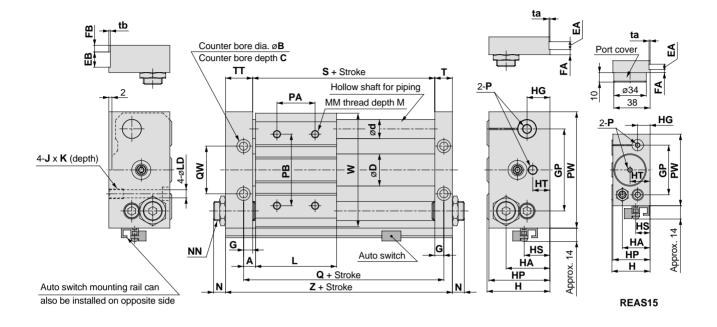
ı arı	Tai 13 1131										
No.	Description	Material	Note								
1	Cylinder tube	Stainless steel									
2	External slider tube	Aluminum alloy									
3	Shaft	Stainless steel									
4	Piston side yoke	Rolled steel plate	Zinc chromated								
5	External slider side yoke	Rolled steel plate	Zinc chromated								
6	Magnet A	Rare earth magnet									
7	Magnet B	Rare earth magnet									
8	Bumper	Urethane rubber									
9	Cushion seal holder	Aluminum alloy	Chromated								
10	Piston	Aluminum alloy	Chromated								
11	Slide block	Aluminum alloy	Hard anodized								
12	Spacer	Rolled steel plate	Nickel plated								
13	Slider spacer	Rolled steel plate	Nickel plated								
14	Snap ring	Carbon tool steel	Nickel plated								
15	Bushing	Oil retaining bearing material									
16	Cushion ring holder	Aluminum alloy	Anodized								
17	Cushion ring	Brass	Electroless nickel plated (REAS32, 40)								
		Stainless steel	REAS20, 25								

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
20	REAS20-PS	
25	REAS25-PS	Above numbers
32	REAS32-PS	28, 29, 30, 31, 32, 33, 34
40	REAS40-PS	


Parts list

No.	Description	Material	Note
18	Lock nut B	Carbon steel	Nickel plated
19	Plate A	Aluminum alloy	Hard anodized
20	Plate B	Aluminum alloy	Hard anodized
21	Guide shaft A	Carbon steel	Hard chrome plated
22	Guide shaft B	Carbon steel	Hard chrome plated
23	Adjustment bolt A	Chromium molybdenum steel	Nickel plated
24	Adjustment bolt B	Chromium molybdenum steel	Nickel plated
25	Hexagon nut	Carbon steel	Nickel plated
26	Switch mounting rail	Aluminum alloy	
27	Auto switch	-	When equipped with auto switch
28*	Cylinder tube gasket	NBR	
29*	Guide shaft gasket	NBR	
30*	Wear ring A	Special resin	
31*	Wear ring B	Special resin	
32*	Piston seal	NBR	
33*	Scraper	NBR	
34*	Cushion seal	NBR	


^{*} Seal kits are sets consisting of items 28 through 34 above, and can be ordered using the kit number for each bore size.

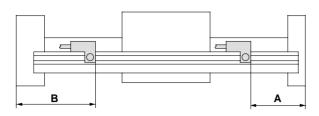
Series REAS

Dimensions/ø10

Dimensions/ø15 to ø40

mm)	

Model	Α	В	С	D	d	EA	EB	FA	FB	G	GP	Н	HA	HG
REAS15	7.5	9.5	5	16.6	12	6	13	3	6	6.5	52	40	29	13
REAS20	10	9.5	5	21.6	16	-	_	-	_	8.5	62	46	36	17
REAS25	10	11	6.5	26.4	16	8	14	4	7	8.5	70	54	40	20
REAS32	12.5	14	8	33.6	20	8	16	5	7	9.5	86	66	46	24
REAS40	12.5	14	8	41.6	25	10	20	5	10	10.5	104	76	57	25

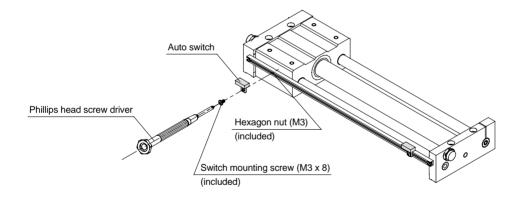

Model	HP	HS	HT	J x K	L	LD	M	ММ	N	NN
REAS15	39	15	21	M6 x 1.0 x 9.5	60	5.6	8	M5 x 0.8	7.5	M8 x 1.0
REAS20	45	25.5	10	M6 x 1.0 x 9.5	70	5.6	10	M6 x 1.0	9.5	M10 x 1.0
REAS25	53	23	10	M8 x 1.25 x 10	70	7	10	M6 x 1.0	11	M14 x 1.5
REAS32	64	27	17	M10 x 1.5 x 15	85	8.7	12	M8 x 1.25	11.5	M20 x 1.5
REAS40	74	31	14	M10 x 1.5 x 15	95	8.7	12	M8 x 1.25	10.5	M20 x 1.5

Model	Р	PA*	PB	PW	Q	QW	S	Т	TT	ta	tb	W	Z
REAS15	M5 x 0.8	30	50	75	75	30	62	12.5	22.5	0.5	1	72	97
REAS20	Rc 1/8	40	70	90	90	38	73	16.5	25.5	-	_	87	115
REAS25	Rc 1/8	40	70	100	90	42	73	16.5	25.5	0.5	1	97	115
REAS32	Rc 1/8	40	75	122	110	50	91	18.5	28.5	0.5	1	119	138
REAS40	Rc 1/4	65	105	145	120	64	99	20.5	35.5	1	1	142	155

* PA dimensions are for split from center.

Series REAS

Proper Auto Switch Mounting Position for Stroke End Detection



								()		
Auto mitale		Dimen	sion A		Dimension B					
Auto switch model Bore size (mm)	D-A73/A80	D-A72 D-A7□H/A80H D-A73C/A80C D-F7□/J79 D-J79C D-F7□V	D-F7 W/J79W D-F7 WV D-F7LF Note 1) D-F79F D-F7BAL	D-F7NTL	D-A73/A80	D-A72 D-A7□H/A80H D-A73C/A80C D-F7□/J79 D-J79C D-F7□V	D-F7 W/J79W D-F7 WV D-F7LF Note 1) D-F79F D-F7BAL	D-F7NTL		
10	35	35.5	39.5	40.5	45	44.5	40.5	39.5		
15	34.5	35	39	40	62.5	62	58	57		
20	64	64.5	68.5	69.5	50	49.5	45.5	44.5		
25	44	44.5	48.5	49.5	71	70.5	66.5	65.5		
32	55	55.5	59.5	59.5	83	82.5	78.5	77.5		
40	61	61.5	65.5	65.5	94	93.5	89.5	88.5		

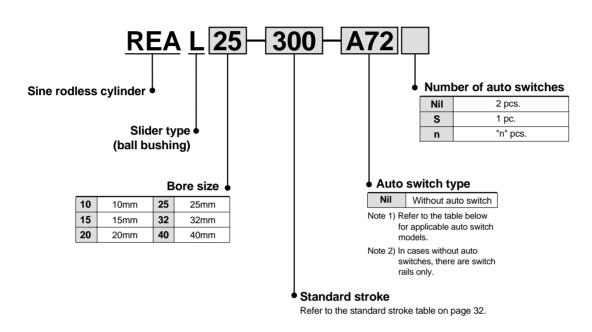
Note1) Model D-F7LF cannot be mounted on bore size ø10.

Auto Switch Mounting

When mounting an auto switch, the switch mounting screw should be screwed into a hexagon nut (M3 \times 0.5) which has been inserted into the groove of the switch rail. (The tightening torque should be about 0.05 to 0.1N·m.)

Auto Switch Operating Range

			(mm)
Auto switch model Bore size (mm)	D-A7□/A80 D-A7□H/A80H D-A73C/A80C		D-F7LF D-F79F
10	6	3	4.5
15	6	4	4.5
20	6	3	4.5
25	6	3	4.5
32	6	3	4.5
40	6	3.5	4.5


(mm)

Note) Operating ranges are standards including hysteresis, and are not guaranteed. Large variations may occur depending on the surrounding environment. (variations on the order of ±30%)

Sine Rodless Cylinder

Series REAL Slider Type/Ball Bushing

How to Order

Applicable auto switches / Refer to "Auto Switch Guide" (E-274-A) for further details on auto switch units. Applicable auto switches / Refer to pages 84 and 85 for auto switch circuit diagrams.

	Applicable auto Switches / Refer to pages o4 and o5 for auto switch circuit diagrams.														
		Electrical	t fo	\\(\frac{1}{2} = \frac{1}{2} = \frac{1}{2}		Load vo	tage	Auto swit	ch model	Lead wire Note 1) length (m)			lote 1)		
Туре	Type Special function		Indicator light	Wiring (output)		DC	AC		Electrical entry direction		3 (L)	5 (Z)	None	Appli loa	
								Perpendicular	In-line	(Nil)	(L)	(2)	(N)		
es es				3 wire (NPN equiv.)	_	5V	_	_	A76H	•	•	_	_	IC circuit	_
달		Crammat	Yes			_	200V	A72	A72H	•	•	_	_	_	
, Š		Grommet				12V	100V	A73	A73H	•	•	•	_		
b b			No	2 wire	24V	5V, 12V	100V or less	A80	H08A	•	•	_	_		
₽ B		Connector	No			240	12V	_	A73C	_	•	•	•	•	_
		Comiodio				5V, 12V	24V or less	A80C	_	•	•	•	•	IC circuit	
				3 wire (NPN)	- 1	5V, 12V		F7NV	F79	•	•	0	_	IC circuit	
	_	Grommet		3 wire (PNP)		5V, 12V		F7PV	F7P	•	•	0	_	TO CITCUIT	
တ္တ				2 wire	12V		F7BV	J79	•	•	0	_			
ğ		Connector						J79C		•	•	•	•		
× it	Diagnostic indication			3 wire (NPN)		5V, 12V		F7NWV	F79W	•	•	0	_	IC circuit	Relay,
S S	(2 color indicator)		Yes	3 wire (PNP)	24V		_		F7PW	•	•	0	_		PLC
Solid state switches		•		2 wire		12V		F7BWV	J79W	•	•	0	_	_	
<u>≅</u>	Water resistant (2 color indicator)	Grommet			-				F7BA		•	0	_		
So	With timer			3 wire (NPN)	-	5V, 12V			F7NT	_	•	0	_	IC circuit	
	With diagnostic output (2 color indicator)								F79F Note 3)	•	•	0	-		
	Latch type with diagnostic output (2 color indicator)			4 wire (NPN)		_		_	F7LF	•	•	0	_	_	

Note 1) Lead wire length symbol 0.5m Nil (Example) A80C

3m L (Example) A80CL 5m Z (Example) A80CZ

None N (Example) A80CN

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-F7LF cannot be mounted on bore size ø10.

Series REAL

Specifications

Fluid	Air					
Proof pressure	1.05MPa					
Maximum operating pressure	0.7MPa					
Minimum operating pressure	0.18MPa					
Ambient and fluid temperature	-10 to 60°C					
Piston speed	50 to 300mm/s					
Lubrication	Non-lube					
Stroke length tolerance	0 to 250st: +1.0, 251 to 1000st: +1.4, 1001st and up: +1.4					

Standard Strokes

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)		
10	150, 200, 250, 300	500		
15	150, 200, 250, 300, 350, 400 450, 500	750		
20	000 050 000 050 400 450	1000		
25 32	200, 250, 300, 350, 400, 450 500, 600, 700, 800	1500		
40	200, 250, 300, 350, 400, 450 500, 600, 700, 800, 900, 1000	1500		

Note) Intermediate strokes can be arranged in 1mm increments.

Magnetic Holding Force

						(N)
Bore size (mm)	10	15	20	25	32	40
Holding force	53.9	137	231	363	588	922

Weights

						(kg)
Bore size (mm)	10	15	20	25	32	40
Basic weight	0.58	1.10	1.85	2.21	4.36	4.83
Additional weight per 50mm stroke	0.077	0.104	0.138	0.172	0.267	0.406

Calculation method/Example: REALS32-500 Basic weight 4.36kg Additional weight 0.267/50mm Cylinder stroke ... 500mm 4.36 + 0.267 \times 500 + 50 = 7.03kg

⚠ Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Operation

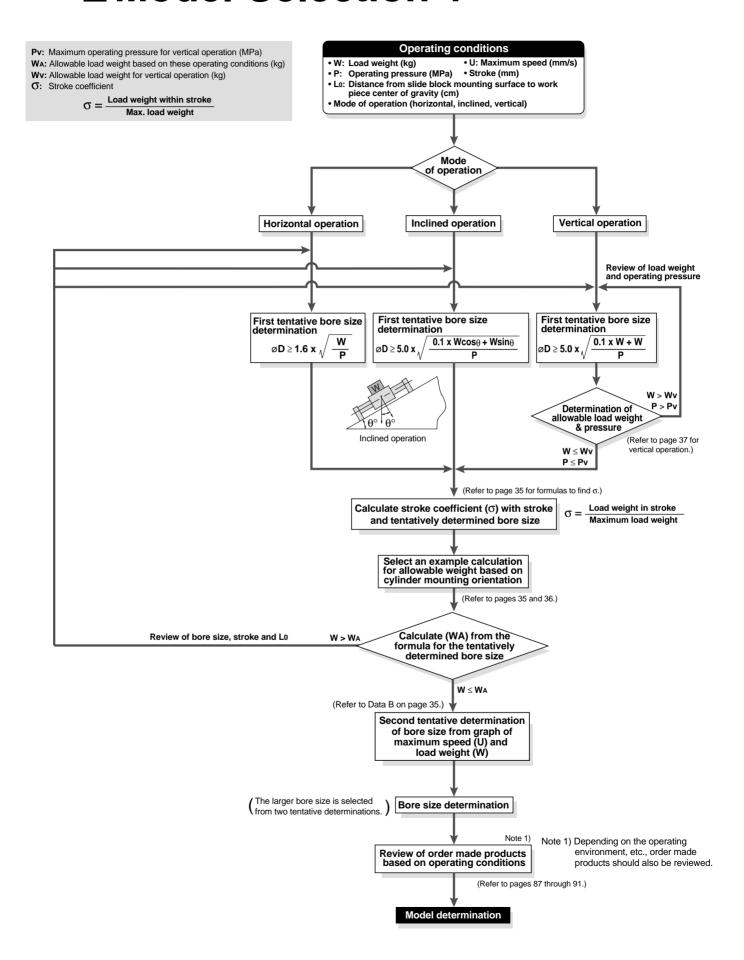
A Warning

1. Be aware of the space between the plates and the slide block.

Take sufficient care as fingers and hands, etc., may be injured if caught while the cylinder is in operation.

2. Do not apply a load to a cylinder which is greater than the allowable value stated in the "model selection pages".

Mounting


⚠ Caution

1. Avoid operation with the external slider fixed to the mounting surface.

The cylinder should be operated with the plates fixed to the mounting surface.

2. Perform mounting so that the external slider will operate through the entire stroke at the minimum operating pressure.

If the mounting surface is not flat, the guides will be warped, increasing the minimum operating pressure and causing premature wear of the bearings. Therefore, mounting should be performed so that the external slider will operate through the entire stroke at the minimum operating pressure. A mounting surface with a high degree of flatness is desirable, but in cases where this is not possible, adjust with shims, etc.

Design Parameters 1

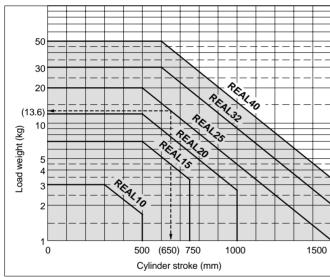
How to Find σ when Selecting the Allowable Load Weight

Since the maximum load weight with respect to the cylinder stroke changes as shown in the table below, σ should be considered as a coefficient determined in accordance with each stroke.

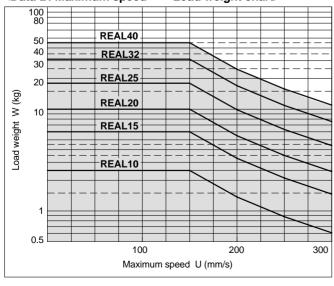
Example) for REAL25-650

- (1) Maximum load weight = 20kg
- (2) Load weight for 650st = 13.6kg
- (3) $\sigma = \frac{13.6}{20} = 0.68$ is the result.

20

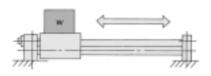

Calculation formula for σ ($\sigma \le 1$)

ST: Stroke (mm)


Model	REAL10	REAL15	REAL20
σ =	$\frac{10^{(0.86-1.3\times10^{-3}\times\text{ST})}}{3}$	$\frac{10^{(1.5-1.3\times10^{-3}\times\text{ST})}}{7}$	$\frac{10^{(1.71-1.3\times10^{-3}\timesST)}}{12}$
Model	REAL25	REAL32	REAL40
_	10 ^(1.98 - 1.3 x 10⁻³ x ST)	10 ^(2.26 - 1.3 x 10⁻³ x ST)	10 ^(2.48 - 1.3 × 10⁻³ × ST)

Note) Calculate with σ = 1 for all applications up to ø10–300mmST, ø15–500mmST, ø20–500mmST, ø25–500mmST, ø32–600mmST and ø40–600mmST.

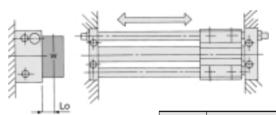
30



<Data B: Maximum speed — Load weight chart>

Examples of Allowable Load Weight Calculation Based on Cylinder Mounting Orientation

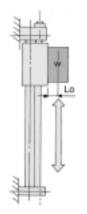
1. Horizontal operation (floor mounting)


Maximum load weight (center of slide block)

(ka)

			<u>'</u>			(0)		
Bore size (mm)	10	15	20	25	32	40		
Max. load weight (kg)	3	7	12	20	30	50		
Stroke (max)	to 300st	to 500st	to 500st	to 500st	to 600st	to 600st		

The above maximum load weight values will change with the stroke length for each cylinder size, due to limitation from warping of the guide shafts. (Take note of the coefficient c.) Moreover, depending on the operating direction, the allowable load weight may be different from the maximum load weight.


2. Horizontal operation (wall mounting)

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	Allowable load weight WA (kg)
10	$\frac{\text{O} \cdot 15.0}{8.9 + 2\text{Lo}}$
15	σ ⋅45.5
15	11.3 + 2Lo
20	<u></u> σ⋅101
20	13.6 + 2Lo
25	_ σ ⋅180
25	15.2 + 2Lo
32	_ σ⋅330
32	18.9 + 2Lo
40	_ σ⋅624
40	22.5 + 2Lo

3. Vertical operation

Bore size (mm)	Allowable load weight Wa (kg)
10	<u>σ·5.00</u> 1.95 + Lo
15	<u>σ·15.96</u> 2.4 + Lo
20	<u>σ·31.1</u> 2.8 + Lo
25	<u>σ·54.48</u> 3.1 + Lo
32	<u></u> 0 ·112.57 3.95 + Lo
40	<u> </u>

Lo: Distance from mounting surface to load center of gravity (cm) Note) A safety factor should be considered to prevent dropping.

Allowable load weight WA (kg) **σ**·10.2·K $2.8\cos\theta + 2(1.95 + Lo)\sin\theta$ **σ**⋅31.1⋅K

 $2.9\cos\theta + 2(2.4 + \text{Lo})\sin\theta$ σ·86.4·K θ 6cos θ +2 (2.8 + Lo) sin θ σ·105.4·K

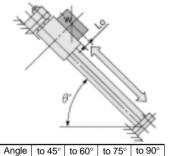
 $3.55\cos\theta + 2(3.1 + \text{Lo})\sin\theta$ σ·178·K

 $4\cos\theta + 2(3.95 + Lo)\sin\theta$

σ·361.9·K $\overline{5.7\cos\theta + 2 (4.75 + \text{Lo}) \sin\theta}$

Design Parameters 2

Examples of Allowable Load Weight Calculation Based on Cylinder Mounting Orientation

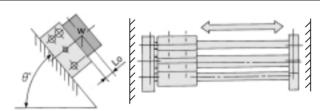

4. Inclined operation (in operating direction)

Bore size

15

25

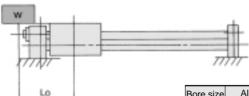
32



				<u> </u>
Angle	to 45°	to 60°	to 75°	to 90°
k	1	0.9	0.8	0.7

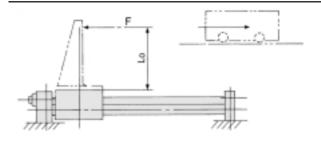
Angle coefficient (k): $k = [to 45^{\circ} (= \theta)] = 1$, $[to 60^{\circ}] = 0.9,$

 $[to 75^{\circ}] = 0.8,$ $[to 90^{\circ}] = 0.7$ Lo: Distance from mounting surface to load center of gravity (cm)


5. Inclined operation (at a right angle to operating direction)

Lo: Distance from mounting surface to load center of gravity (cm)

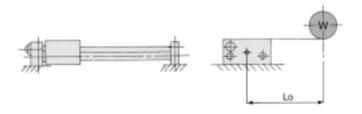
Bore size (mm)	Allowable load weight WA (kg)
10	<u></u> σ⋅15
	$5 + 2 (1.95 + Lo) \sin \theta$
15	σ ⋅45.5
13	$6.5 + 2 (2.4 + Lo) \sin \theta$
20	<u>σ·115</u>
20	$8 + 2 (2.8 + Lo) \sin \theta$
25	σ·180
23	$9 + 2 (3.1 + Lo) \sin \theta$
32	σ⋅330
32	11 + 2 (3.95 + Lo) sin θ
40	σ⋅624
40	$13 + 2 (4.75 + Lo) \sin \theta$


6. Load center offset in operating direction (Lo)

Lo: Distance from slide block center to load center of gravity (cm)

Bore size (mm)	Allowable load weight WA (kg)
10	$\frac{\text{O.5.6}}{\text{Lo + 2.8}}$
15	$\frac{\text{O} \cdot 13.34}{\text{Lo} + 2.9}$
20	$\frac{\text{O}\cdot 43.2}{\text{Lo} + 6}$
25	<u>σ⋅46.15</u> Lo + 3.55
32	$\frac{\mathbf{G} \cdot 80}{Lo + 4}$
40	<u>σ·188.1</u> Lo + 5.7

7. Horizontal operation (pushing load, pusher)



Drive (from slide block to position Lo) resistance force (kg) Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	10	15	20
Allowable load	$\frac{\sigma \cdot 5.55}{1.95 + Lo}$	<u>σ·15.96</u>	<u>σ·41.7</u>
weight (WA)(kg)		2.4 + Lo	2.8 + Lo

Bore size (mm)	25	32	40
Allowable load	<u>σ⋅58.9</u>	<u>σ·106.65</u>	<u>σ·228</u>
weight (WA)(kg)	3.1 + Lo	3.95 + Lo	4.75 + Lo

8. Horizontal operation (load, lateral offset Lo)

11 + Lo

13 + Lo

Lo: Distance from center of slide block to load's center of gravity (cm)

Bore size (mm)	10	15	20
Allowable load weight (WA)(kg)	<u> </u>	<u>σ·45.5</u> 6.5 + Lo	<u>σ⋅80.7</u> 8 + Lo
Bore size (mm)	25	32	40
Allowable load	σ·144	σ ⋅275	o ⋅520

9 + Lo

weight (WA)(kg)

Design Parameters 3

Vertical Operation

When operating a load vertically, it should be operated within the allowable load weights and maximum operating pressures shown in the table below. Use caution, as operating above the prescribed values may lead to dropping of the load.

Bore size (mm)	Model	Allowable load weight Wv (kg)	Max. operating pressure Pv (MPa)
10	REAL10	2.7	0.55
15	REAL15	7.0	0.65
20	REAL20	11.0	0.65
25	REAL25	18.5	0.65
32	REAL32	30.0	0.65
40	REAL40	47.0	0.65

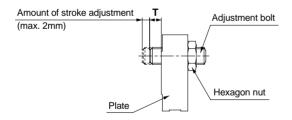
Note) Use caution, as there is a possibility of breaking the magnetic coupling if operated above the maximum operating pressure.

Intermediate Stops

The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.

The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.

Cushion stroke

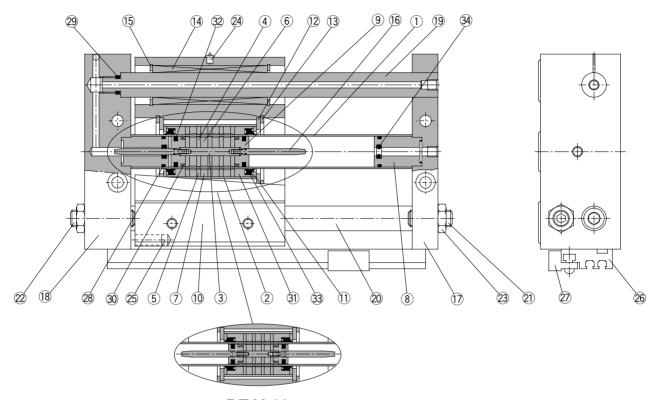

Model	Stroke (mm)
REAL10	20
REAL15	25
REAL20	30
REAL25	30
REAL32	30
REAL40	35

Stroke Adjustment

The adjustment bolt is adjusted to the optimum position for smooth acceleration and deceleration at the time of shipment, and should be operated at the full stroke. When stroke adjustment is necessary, the maximum amount of adjustment on one side is 2mm. (Do not adjust more than 2mm, as it will not be possible to obtain smooth acceleration and deceleration.)

Stroke Adjustment

Loosen the hexagon nut, and after performing the stroke adjustment from the plate side with a hexagon wrench, retighten and secure the hexagon nut


Adjustment Bolt Position (at Shipment), Hexagon Nut Tightening Torque

Model	T (mm)	Tightening torque (N·m)					
REAL10	1	4.67					
REAL15	1	1.67					
REAL20	1	3.14					
REAL25	1	10.8					
REAL32	1	23.5					
REAL40	1	۷۵.5					

Series REAL

Construction/ø10, ø15

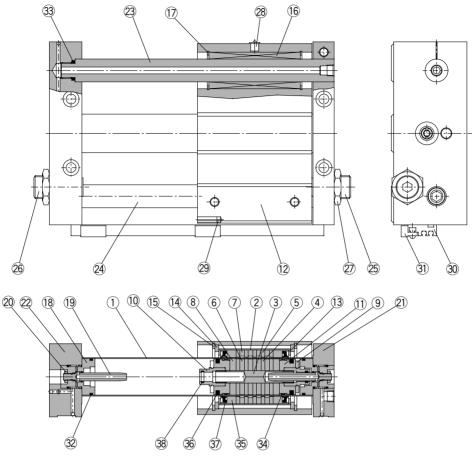
REAL₁₀

Parts list

· uito	1100		
No.	Description	Material	Note
1	Cylinder tube	Stainless steel	
2	External slider tube	Aluminum alloy	
3	Shaft	Stainless steel	
4	Piston side yoke	Rolled steel plate	Zinc chromated
5	External slider side yoke	Rolled steel plate	Zinc chromated
6	Magnet A	Rare earth magnet	
7	Magnet B	Rare earth magnet	
8	Cushion seal holder	Aluminum alloy	Anodized
9	Piston	Brass	Electroless nickel plated
10	Slide block	Aluminum alloy	Hard anodized
11	Spacer	Rolled steel plate	Nickel plated
12	Slider spacer	Rolled steel plate	Nickel plated
13	Snap ring	Carbon tool steel	Nickel plated
14	Ball bushing	-	
15	Snap ring	Carbon tool steel	Nickel plated
16	Cushion ring	Stainless steel	
17	Plate A	Aluminum alloy	Hard anodized

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
10	REAS10-PS	Above numbers
15	REAS15-PS	28, 29, 30, 31, 32, 33, 34


Parts list

No.	Description	Material	Note
18	Plate B	Aluminum alloy	Hard anodized
19	Guide shaft A	Carbon steel	Hard chrome plated
20	Guide shaft B	Carbon steel	Hard chrome plated
21	Adjustment bolt A	Chromium molybdenum steel	Nickel plated
22	Adjustment bolt B	Chromium molybdenum steel	Nickel plated
23	Hexagon nut	Carbon steel	Nickel plated
24	Nipple	Carbon steel	Nickel plated (except REAL10)
25	Magnet for auto switch	Rare earth magnet	
26	Switch mounting rail	Aluminum alloy	
27	Auto switch	-	
28*	Cylinder tube gasket	NBR	
29*	Guide shaft gasket	NBR	
30*	Wear ring A	Special resin	
31*	Wear ring B	Special resin	
32*	Piston seal	NBR	
33*	Scraper	NBR	
34*	Cushion seal	NBR	

st Seal kits are sets consisting of items 28 through 34 above, and can be ordered using the kit number for each bore size.

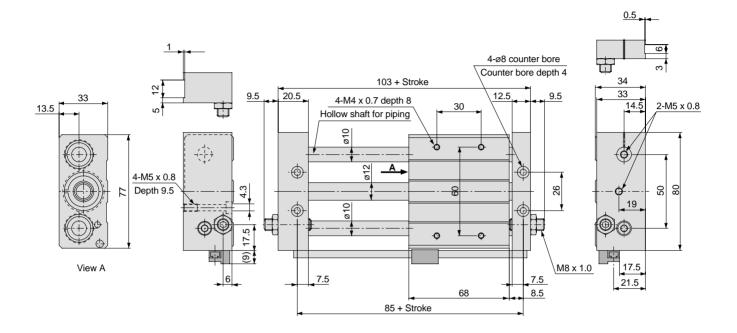
Construction/ø20 to ø40

Parte liet

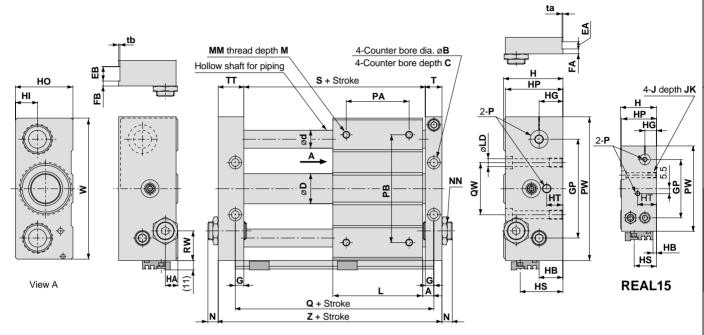
Parts	ist		
No.	Description	Material	Note
1	Cylinder tube	Stainless steel	
2	External slider tube	Aluminum alloy	
3	Shaft	Stainless steel	
4	Piston side yoke	Rolled steel plate	Zinc chromated
5	External slider side yoke	Rolled steel plate	Zinc chromated
6	Magnet A	Rare earth magnet	
7	Magnet B	Rare earth magnet	
8	Piston side spacer	Aluminum alloy	Chromated
9	Bumper	Urethane rubber	
10	Cushion seal holder	Aluminum alloy	Chromated
11	Piston	Aluminum alloy	Chromated
12	Slide block	Aluminum alloy	Hard anodized
13	Spacer	Rolled steel plate	Nickel plated
14	Slider spacer	Carbon steel	Nickel plated
15	Snap ring	Carbon tool steel	Nickel plated
16	Ball bushing	_	
17	Snap ring	Carbon tool steel	Nickel plated
18	Cushion ring holder	Aluminum alloy	Anodized
19	Cushion ring	Brass	Electroless nickel plated (REAL32, 40)
		Stainless steel	REAL20, 25

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
20	REAS20-PS	
25	REAS25-PS	Above numbers
32	REAS32-PS	32, 33, 34, 35, 36, 37, 38
40	REAS40-PS	


Darta liet

No.	Description	Material	Note
20	Lock nut B	Carbon steel	Nickel plated
21	Plate A	Aluminum alloy	Hard anodized
22	Plate B	Aluminum alloy	Hard anodized
23	Guide shaft A	Carbon steel	Hard chrome plated
24	Guide shaft B	Carbon steel	Hard chrome plated
25	Adjustment bolt A	Chromium molybdenum steel	Nickel plated
26	Adjustment bolt B	Chromium molybdenum steel	Nickel plated
27	Hexagon nut	Carbon steel	Nickel plated
28	Nipple	Brass	Nickel plated
29	Magnet for auto switch	Rare earth magnet	
30	Switch mounting rail	Aluminum alloy	
31	Auto switch	_	
32 *	Cylinder tube gasket	NBR	
33*	Guide shaft gasket	NBR	
34*	Wear ring A	Special resin	
35*	Wear ring B	Special resin	
36*	Piston seal	NBR	
37 *	Scraper	NBR	
38*	Cushion seal	NBR	


^{*} Seal kits are sets consisting of items 32 through 38 above, and can be ordered using the kit number for each bore size.

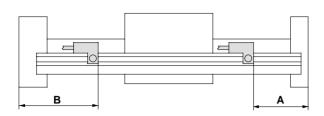
Series REAL

Dimensions/ø10

Dimensions/ø15 to ø40

	(111111)	n
Ю	HP	mr
38	39	
44	45	

Model В С D EΑ ΕВ FΑ FΒ G GP Н НΑ НВ HG н d REAL15 7.5 9.5 5 16.6 12 6 13 3 6 6.5 65 40 6.5 4 16 14 REAL₂₀ 9.5 9.5 5 21.6 8.5 80 46 9 10 18 16 16 REAL25 9.5 11 6.5 26.4 16 8 14 4 7 8.5 90 54 9 18 23 21 52 53 REAL32 8 16 5 26.5 24.5 64 64 10.5 14 33.6 20 8 7 9.5 110 66 12 26.5 REAL40 74 11.5 14 8 41.6 25 10 20 5 10 10.5 78 12 35 30.5 28.5 76 130

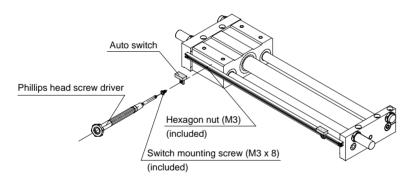

Model	HS	HT	J	JK	L	LD	М	MM	N	NN	Р	PA*	PB	PW
REAL15	25	21	M6 x 1.0	9.5	75	5.6	8	M5 x 0.8	7.5	M8 x 1.0	M5 x 0.8	45	70	95
REAL20	31	10	M6 x 1.0	10	86	5.6	10	M6 x 1.0	10	M10 x 1.0	Rc 1/8	50	90	120
REAL25	39	10	M8 x 1.25	10	86	7	10	M6 x 1.0	11	M14 x 1.5	Rc 1/8	60	100	130
REAL32	47.5	17	M10 x 1.5	15	100	9.2	12	M8 x 1.25	11.5	M20 x 1.5	Rc 1/8	70	120	160
REAL40	56	14	M10 x 1.5	15	136	9.2	12	M8 x 1.25	10.5	M20 x 1.5	Rc 1/4	90	140	190

* PA dimensions are for split from center.

Model	Q	QW	RW	S	Т	TT	ta	tb	W	Z
REAL15	90	30	15	77	12.5	22.5	0.5	1.0	92	112
REAL20	105	40	28	88	16.5	25.5	-	_	117	130
REAL25	105	50	22	88	16.5	25.5	0.5	1.0	127	130
REAL32	121	60	33	102	18.5	28.5	0.5	1.0	157	149
REAL40	159	84	35	138	20.5	35.5	1.0	1.0	187	194

Series REAL

Proper Auto Switch Mounting Position for Stroke End Detection



								(mm)	
A		Dimen	sion A		Dimension B				
Auto switch model Bore size (mm)		D-A7⊔H/A80H D-A73C/A80C D-F7□/J79	D-F7LF Note 1) D-F7NTL		D-A73/A80	D-A73C/A80C D-F7□/J79 D-J79C	D-F7 W/J79W D-F7 WV D-F7LF Note 1) D-F79F D-F7BAL	D-F7NTL	
10	58	58.5	62.5	63.5	45	44.5	40.5	39.5	
15	65	65.5	69.5	70.5	47	46.5	42.5	41.5	
20	76	76.5	80.5	81.5	54	53.5	49.5	48.5	
25	76	76.5	80.5	81.5	54	53.5	49.5	48.5	
32	92	92.5	96.5	97.5	57	56.5	52.5	51.5	
40	130	130.5	134.5	135.5	64	63.5	59.5	58.5	

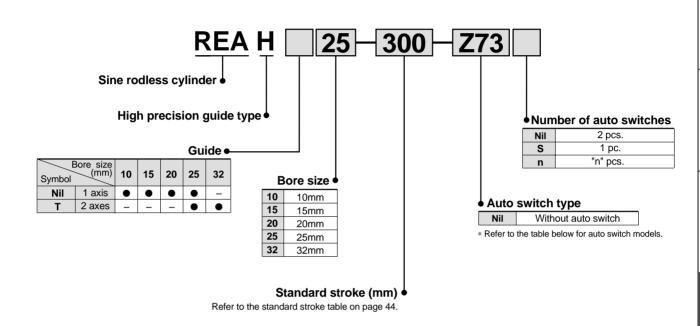
Note1) Model D-F7LF cannot be mounted on bore size ø10.

Auto Switch Mounting

When mounting an auto switch, the switch mounting screw should be screwed into a hexagon nut (M3 x 0.5) which has been inserted into the groove of the switch rail. (The tightening torque should be about 0.05 to 0.1N·m.)

Auto Switch Operating range

			(mm)
Auto switch model Bore size (mm)	D-A7□/A80 D-A7□H/A80H D-A73C/A80C	D-F7□/J79 D-J79C D-F7□V D-F7NTL D-F7□W/J79W D-F7□WV D-F7BAL	D-F7LF D-F79F
10	6	3	4.5
15	6	4	4.5
20	6	3	4.5
25	6	3	4.5
32	6	3	4.5
40	6	3.5	4.5


Note) Operating ranges are standards including hysteresis, and are not guaranteed. Large variations may occur depending on the surrounding environment. (variations on the order of ±30%)

Max. Speed 300

Sine Rodless Cylinder

Series REAH **High Precision Guide Type**

How to Order

Applicable auto switches / Refer to "Auto Switch Guide" (E-274-A) for further details on auto switch units Refer to pages 84 and 85 for auto switch circuit diagrams.

T	Special	Electrical	Indicator light	Wiring		Load voltage		Auto swite	ch model	Lead wire	e length	(m) Note 1)		
Туре	function	entry	ligil Bil	(output)		DC	AC	Electrical en	try direction	0.5	3	5	Applica	ole load
			드			DC	AC	Perpendicular	In-line	(Nil)	(L)	(Z)		
Reed switches			Yes	3 wire (NPN equiv.)	-	5V	_	-	Z 76	•	•	_	IC circuit	_
it see	_	Grommet		2 wire	24V 12V	12V	100V	_	Z73	•	•	•	_	Relay,
LE S			No	2 WIIE	24V	5V, 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC
				3 wire (NPN)		5) / 40) /	5V, 12V	Y69A	Y59A	•	•	0	IC circuit	
s te	-			3 wire (PNP)		50, 120		Y7PV	Y7P	•	•	0	IC Circuit	
Sta		Grommet	Yes	2 wire	24V	12V	_	Y69B	Y59B	•	•	0	_	Relay,
팔충	Diagnostic	Grommet	163	3 wire (NPN)	241	E\/ 40\/		Y7NWV	Y7NW	•	•	0	IC circuit	PLC
Solid state switches	indication (2 color			3 wire (PNP)		5V, 12V		Y7PWV	Y7PW	•	•	0	io dicuit	
,	indicator)			2 wire		12V		Y7BWV	Y7BW	•	•	0	_	

Note 1) Lead wire length symbol 0.5m Nil (Example) Y59A

3m L (Example) Y59AL 5m Z (Example) Y59AZ

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Series REAH

Specifications

Bore size (mm)	10	15	20	25	32	
Fluid	Air					
Action	Double acting					
Maximum operating pressure	0.7MPa					
Minimum operating pressure	0.2MPa					
Proof pressure	1.05MPa					
Ambient and fluid temperature			−10 to 60°C			
Piston speed			70 to 300mm/	S		
Lubrication			Non-lube			
Stroke length tolerance	0 to 1.8mm					
Piping type	Centralized piping					
Piping port size	M5 x 0.8 Rc 1/8					

Standard Strokes

Bore size (mm)	Number of axes	Standard stroke (mm)	Maximum manufacturable stroke (mm)	
10		150, 200, 300	500	
15	1 axis	150, 200, 300, 400, 500	750	
20	I axis	200, 300, 400, 500, 600	1000	
25		200, 300, 400, 500, 600, 800	4000	
25	2 axes	200, 300, 400, 500, 600, 800, 1000	1200	
32	2 axes	200, 300, 400, 300, 000, 000, 1000	1500	

Weights

								(kg)				
Model	Standard stroke mm											
Model	150	200	300	400	500	600	800	1000				
REAH10	1.2	1.3	1.6	_	_	_	_	_				
REAH15	2.5	2.7	3.2	3.6	4.1	_	_	_				
REAH20	_	3.5	4.0	4.4	4.9	5.4	_	_				
REAH25	_	5.3	6.0	6.6	7.3	8.0	9.4	_				
REAHT25	_	6.2	7.3	8.3	9.4	10.4	12.5	14.6				
REAHT32	_	9.6	10.7	11.9	13.0	14.2	16.5	18.8				

Magnetic Holding Force

					(N)
Bore size (mm)	10	15	20	25	32
Holding force	53.9	137	231	363	588

Theoretical Output

							(N)			
Bore	Piston	O	Operating pressure (MPa)							
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7			
10	78	15	23	31	39	46	54			
15	176	35	52	70	88	105	123			
20	314	62	94	125	157	188	219			
25	490	98	147	196	245	294	343			
32	804	161	241	322	402	483	563			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²).

Note 1) Strokes exceeding the standard strokes are available as a special order.

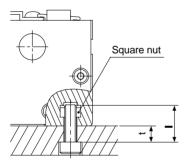
Note 2) Intermediate strokes other than order made (refer to page 91 for XB10) are available by special order.

Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Mounting

⚠ Caution


1. The interior is protected to a certain extent by the top cover, however, when performing maintenance, etc., take care not to cause scratches or other damage to the cylinder tube, slide table or linear guide by striking them or placing objects on them.

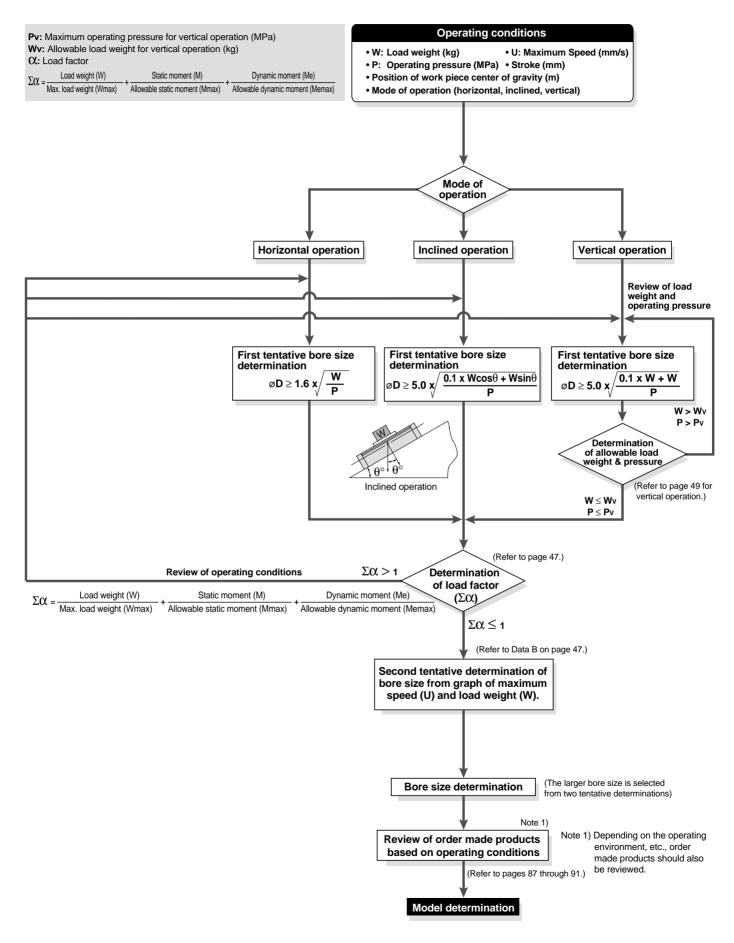
The bore and exterior of tubes are manufactured to precise tolerances, so that even a slight deformation can cause malfunction.

- 2. Since the slide table is supported by precision bearings, do not apply strong impacts or large moment, etc., when mounting work pieces.
- 3. Mounting of the cylinder body

The body is mounted using the square nuts, which are included, in the two T-slots on the bottom of the body. Refer to the table below for mounting bolt dimensions and tightening torque.

M	odel	REAH10	REAH15	REAH20	REAH25	REAHT25	REATH32
	Screw size		M5 >	x 0.8	M6 >	(1.0	M8 x 1.25
dimensions	Dimension t	/ 7	-	% 8	1	9	/ 12
Tightening torque	N⋅m	1.37	2.6	65	4	.4	13.2

Operation


△ Caution

 The unit can be used with a direct load within the allowable range, but when connecting to a load which has an external guide mechanism, careful alignment is necessary.

Since variation of the shaft center increases as the stroke becomes longer, a connection method should be devised which allows for this displacement.

- 2. Since the guide is adjusted at the time of shipment, unintentional movement of the adjustment setting should be avoided.
- 3. Contact SMC before operating in an environment where there will be contact with chips, dust (paper scraps, thread scraps, etc.) or cutting oil (gas oil, water, hot water, etc.).
- 4. Do not operate with the magnetic coupling out of position.

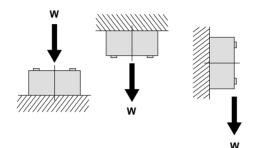
In case the magnetic coupling is out of position, push the external slider back into the correct position by hand at the end of the stroke (or correct the piston slider with air pressure).

(mm)

Series REAH **Model Selection 2**

Design Parameters 1

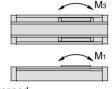
The maximum load weight and allowable moment will differ depending on the work piece mounting method, cylinder mounting orientation and


A determination of suitability for use should be performed so that the total (Σαπ) of the load factors (απ) for each weight and moment does not exceed 1.

Load weight (W) Static moment (M) Dynamic moment (Me) $\Sigma \alpha n =$ Max. load weight (Wmax) + Allowable static moment (Mmax) + Allowable dynamic moment (Memax)

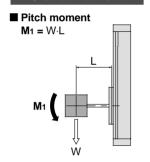
Load weight

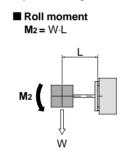
Max. load weight (kg)

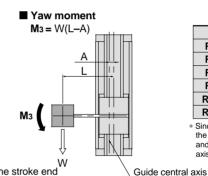

Model	Wmax
REAH10	4
REAH15	9
REAH20	16
REAH25	25
REAHT25	25
REAHT32	40

Moment

Allowable moment


(Static moment/Dynamic moment) (N·n										
Model	M ₁	M ₂	Мз	Model	M ₁	M ₂	Мз			
REAH10	1.5	2.5	1.5	REAH25	28	26	28			
REAH15	10	16	10	REAHT25	56	85	56			
REAH20	13	16	13	REAHT32	64	96	64			



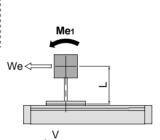


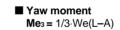
Static moment

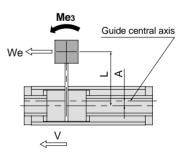
Moment generated by the self weight of the load even when the cylinder is stopped

	(111111)
Model	Α
REAH10	15
REAH15	17.5
REAH20	19.5
REAH25	23.5
REAHT25	0*
REAHT32	0*

the guides' central axis and the cylinder's central axis are the same

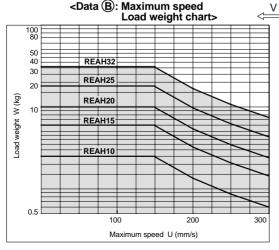

Dynamic moment Moment generated by the load equivalent to the impact at the stroke end W


We = $5 \times 10^{-3} \cdot W \cdot g \cdot U$


We: Load equivalent to impact [N] Load weight [kg] Maximum speed [mm/s]

Gravitational acceleration (approx. 9.8m/s²)

■ Pitch moment Me1 = 1/3·We·L



Model	Α
REAH10	15
REAH15	17.5
REAH20	19.5
REAH25	23.5
REAHT25	0*
REAHT32	0*

Since there are 2 guides, the guides' central axis and the cylinder's central axis are the same

Selection Calculation -

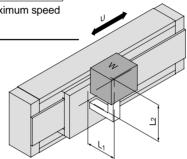
The selection calculation finds the load factors (α n) of the items below, where the total (α n) does not exceed 1.

$$\Sigma \Omega n = \Omega_1 + \Omega_2 + \Omega_3 \le 1$$

Item	Load factor αn	Note
1. Max. load weight	$\mathbf{C}_1 = W/Wmax$	Review W. Wmax is the maximum load weight.
2. Static moment	CL2 = M/Mmax	Review M ₁ , M ₂ , M ₃ . Mmax is the allowable moment.
3. Dynamic moment	C3 = Me/Memax	Review Me1, Me3. Memax is the allowable moment.

U: Maximum speed

Calculation examples


Operating conditions

Cylinder: REAH15

Mounting: Horizontal wall mounting Maximum speed: U = 300 [mm/s]

Load weight: W = 1 [kg] (excluding weight of arm section)

L1 = 200 [mm]L2 = 200 [mm]

Item	Load factor (ζn	Note
1. Maximum load weight	O(1 = W/Wmax = 1/9 = 0.111	Review W.
2. Static moment	$M_2 = W \cdot L_1$ $W = 1 [kg]$ = 10 \cdot 0.2 = 10 [N] = 2 [N·m] $C_2 = M_2/M_2 max$ = 2/16 = 0.125	Review M2. Since M1 & M3 are not generated, review is unnecessary.
3. Dynamic moment Me3 Guide central axis Me1	We = $5 \times 10^{-3} \cdot \text{W} \cdot \text{g} \cdot \text{U}$ = $5 \times 10^{-3} \cdot 19.8 \cdot 300$ = $15 [\text{N}]$ Me3 = $1/3 \cdot \text{We}(\text{L}_2\text{-A})$ = $1/3 \cdot 15 \cdot 0.182$ = $0.91 [\text{N} \cdot \text{m}]$ 0.3 = Mes/Mesmax = $0.91/10$ = 0.091	Review Me3.
We W	Me1 = 1 /3·We·L1 = 1/3·15·0.2 = 0.1 [N·m] C(4 = Me1/Me1 max = 1/10 = 0.1	Review Me1.

 $\Sigma \Omega n = \Omega 1 + \Omega 2 + \Omega 3 + \Omega 4$

= 0.111 + 0.125 + 0.091 + 0.10

= 0.427 Can be used based on $\Sigma \Omega n = 0.427 \le 1$

Design Parameters 2

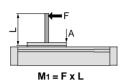
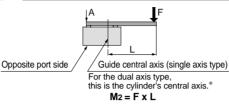
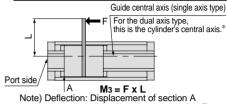
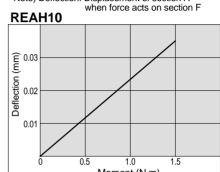
Table Deflection

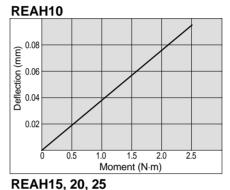
REAH10

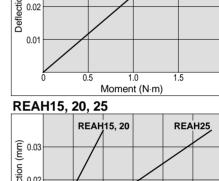
(E 0.02

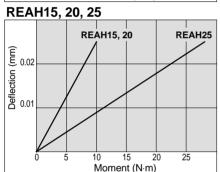
Deflection (

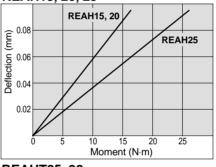
Table deflection due to pitch moment load

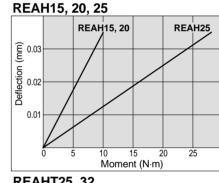





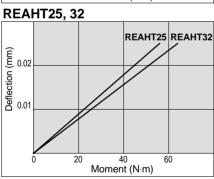

Table deflection due to roll moment load

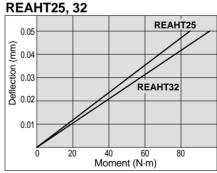


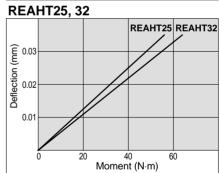

Table deflection due to yaw moment load










Moment (N·m)

Vertical Operation

When using in vertical operation, prevention of work piece dropping due to breaking of the magnetic coupling should be considered. The allowable load weight and maximum operating pressure should be as shown in the table below.

Model	Allowable load weight Wv (kg)	Max. operating pressure Pv (MPa)
REAH10	2.7	0.55
REAH15	7.0	0.65
REAH20	11.0	0.65
REAH25	18.5	0.65
REAHT25	18.5	0.65
REAHT32	30.0	0.65

Intermediate Stops

The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.

The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.

Cushion stroke

Model	Stroke (mm)
REAH10	20
REAH15	25
REAH20	30
REAH25	30
REAHT25	30
REAHT32	30

Series REAH


Stroke Adjustment

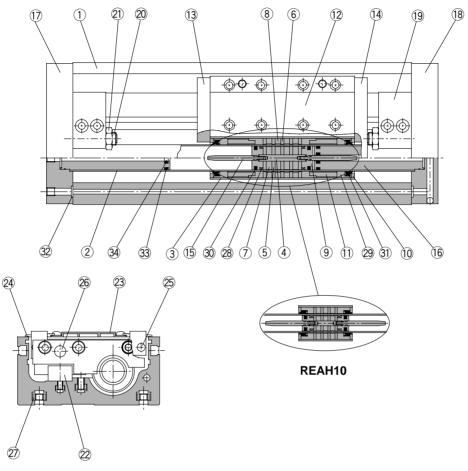
The adjustment bolt is adjusted to the optimum position for smooth acceleration and deceleration at the time of shipment, and should be operated at the full stroke. When stroke adjustment is necessary, the maximum amount of adjustment on one side is 2mm. (Do not adjust more than 2mm, as it will not be possible to obtain smooth acceleration and deceleration.)

Do not adjust based on the stopper's movement, as this can cause cylinder damage.

Stroke Adjustment

Loosen the round head Phillips screws, and remove the top covers and dust covers (4pcs.). Then loosen the hexagon nut, and after performing the stroke adjustment from the plate side with a hexagon wrench, retighten and secure the hexagon nut.

Adjustment Bolt Position (at Shipment), Hexagon Nut Tightening Torque


Model	T (mm)	Tightening torque (N⋅m)
REAH10	7	
REAH15	7	1.67
REAH20	7	
REAH25	9	
REAHT25	9	3.14
REAHT32	9	

After adjusting the stroke, replace the top covers and dust covers. Tighten the round head Phillips screws for securing the top covers with a torque of 0.58N·m.

Construction/ø10, ø15

Single axis type/REAH

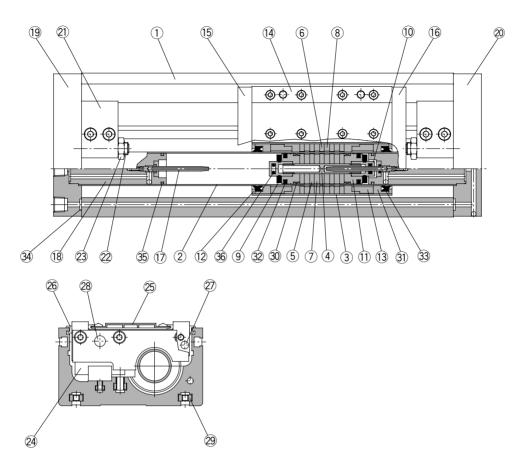
Parts list

raits	1130		
No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Cylinder tube	Stainless steel	
3	External slider tube	Aluminum alloy	
4	Shaft	Stainless steel	
5	Piston side yoke	Rolled steel plate	Zinc chromated
6	External slider side yoke	Rolled steel plate	Zinc chromated
7	Magnet A	Rare earth magnet	
8	Magnet B	Rare earth magnet	
9	Piston	Brass	Electroless nickel plated
10	Piston Spacer	Brass Rolled steel plate	Electroless nickel plated Nickel plated
	1 10 10 11		· · · · ·
10	Spacer	Rolled steel plate	Nickel plated Chromated
10	Spacer Space ring	Rolled steel plate Aluminum alloy	Nickel plated Chromated (except REAH10)
10 11 12	Spacer Space ring Slide table	Rolled steel plate Aluminum alloy Aluminum alloy	Nickel plated Chromated (except REAH10) Hard anodized
10 11 12 13	Spacer Space ring Slide table Side plate A	Rolled steel plate Aluminum alloy Aluminum alloy Aluminum alloy	Nickel plated Chromated (except REAH10) Hard anodized Hard anodized
10 11 12 13 14	Spacer Space ring Slide table Side plate A Side plate B	Rolled steel plate Aluminum alloy Aluminum alloy Aluminum alloy Aluminum alloy	Nickel plated Chromated (except REAH10) Hard anodized Hard anodized
10 11 12 13 14 15	Spacer Space ring Slide table Side plate A Side plate B Cushion ring	Rolled steel plate Aluminum alloy Aluminum alloy Aluminum alloy Aluminum alloy Stainless steel	Nickel plated Chromated (except REAH10) Hard anodized Hard anodized Hard anodized

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
10	REAH10-PS	Above numbers
15	REAH15-PS	28, 29, 30, 31, 32, 33, 34

Parts list


No.	Description	Material	Note
18	Plate B	Aluminum alloy	Hard anodized
19	Stopper	Aluminum alloy	Anodized
20	Adjustment bolt	Chromium molybdenum steel	Nickel plated
21	Hexagon nut	Carbon steel	Nickel plated
22	Linear guide		
23	Top cover	Aluminum alloy	Hard anodized
24	Dust cover	Special resin	
25	Magnet (for auto switch)	Rare earth magnet	
26	Parallel pin	Carbon steel	Nickel plated
27	Square nut for body mounting	Carbon steel	Nickel plated (accessory)
28*	Wear ring A	Special resin	
29*	Wear ring B	Special resin	
30*	Piston seal	NBR	
31*	Scraper	NBR	
32*	O-ring	NBR	
33*	O-ring	NBR	
34*	Cushion seal	NBR	

^{*} Seal kits are sets consisting of items 28 through 34 above, and can be ordered using the kit number for each bore size.

Series REAH

Construction/ø20, ø25

Single axis type/REAH

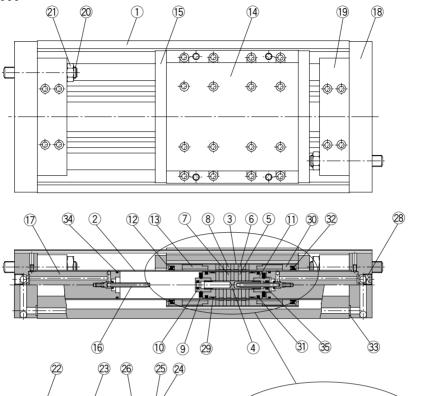
Parts list

u			
No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Cylinder tube	Stainless steel	
3	External slider tube	Aluminum alloy	
4	Shaft	Stainless steel	
5	Piston side yoke	Rolled steel plate	Zinc chromated
6	External slider side yoke	Rolled steel plate	Zinc chromated
7	Magnet A	Rare earth magnet	
8	Magnet B	Rare earth magnet	
9	Bumper	Urethane rubber	
10	Cushion seal holder	Aluminum alloy	Chromated
11	Piston	Aluminum alloy	Chromated
12	Spacer	Rolled steel plate	Nickel plated
13	Space ring	Aluminum alloy	Chromated
14	Slide table	Aluminum alloy	Hard anodized
15	Side plate A	Aluminum alloy	Hard anodized
16	Side plate B	Aluminum alloy	Hard anodized
17	Cushion ring	Stainless steel	
18	Internal stopper	Aluminum alloy	Anodized

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
20	REAH20-PS	Above numbers
25	REAH25-PS	30, 31, 32, 33, 34, 35, 36

Parts list


No.	Description	Material	Note
19	Plate A	Aluminum alloy	Hard anodized
20	Plate B	Aluminum alloy	Hard anodized
21	Stopper	Aluminum alloy	Anodized
22	Adjustment bolt	Chromium molybdenum steel	Nickel plated
23	Hexagon nut	Carbon steel	Nickel plated
24	Linear guide		
25	Top cover	Aluminum alloy	Hard anodized
26	Dust cover	Special resin	
27	Magnet (for auto switch)	Rare earth magnet	
28	Parallel pin	Carbon steel	Nickel plated
29	Square nut for body mounting	Carbon steel	Nickel plated (accessory)
30 *	Wear ring A	Special resin	
31*	Wear ring B	Special resin	
32 *	Piston seal	NBR	
33*	Scraper	NBR	
34*	O-ring	NBR	
35*	O-ring	NBR	
36*	Cushion seal	NBR	

st Seal kits are sets consisting of items 30 through 36 above, and can be ordered using the kit number for each bore size.

Construction/ø25, ø32

Dual axis type/REAHT

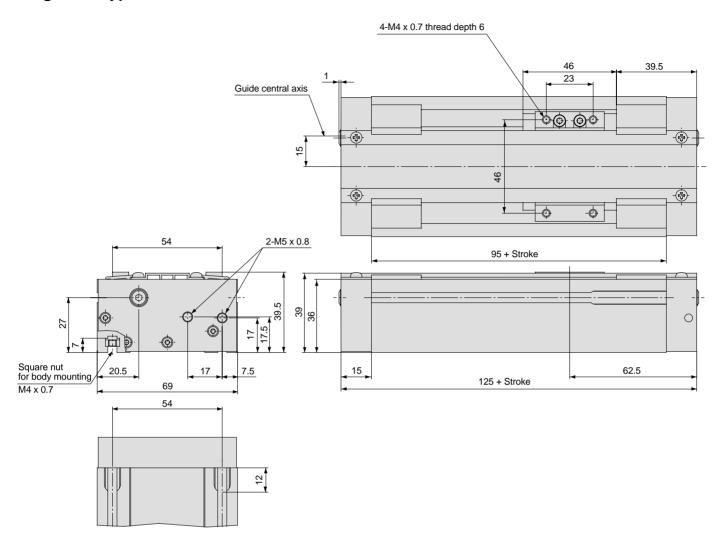
Parts list

Turto not				
No.	Description	Material	Note	
1	Body	Aluminum alloy	Hard anodized	
2	Cylinder tube	Stainless steel		
3	External slider tube	Aluminum alloy		
4	Shaft	Stainless steel		
5	Piston side yoke	Rolled steel plate	Zinc chromated	
6	External slider side yoke	Rolled steel plate	Zinc chromated	
7	Magnet A	Rare earth magnet		
8	Magnet B	Rare earth magnet		
9	Bumper	Urethane rubber		
10	Cushion seal holder	Aluminum alloy	Chromated	
11	Piston	Aluminum alloy	Chromated	
12	Spacer	Rolled steel plate	Nickel plated	
13	Space ring	Aluminum alloy	Chromated (except REAHT32)	
14	Slide table	Aluminum alloy	Hard anodized	
15	Side plate	Aluminum alloy	Hard anodized (except REAHT32)	
16	Cushion ring	Brass	Electroless nickel plated (REAHT32)	
	- Cusinon ring	Stainless steel	REAHT25	
17	Internal stopper	Aluminum alloy	Anodized	

Replacement parts: Seal kits

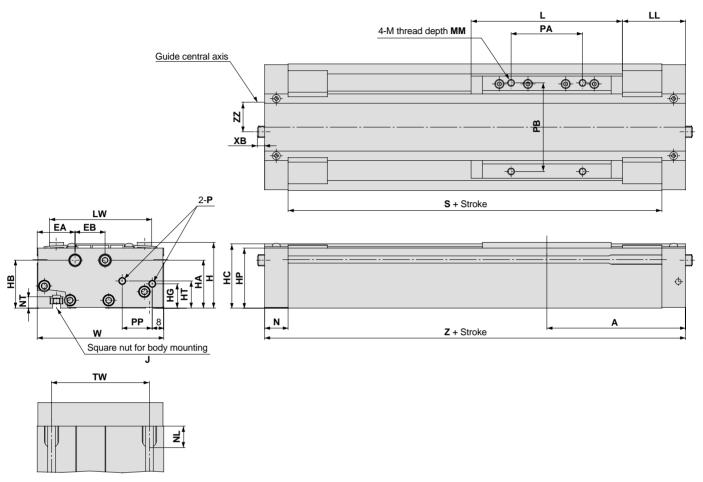
Bore size (mm)	Kit no.	Contents
25	REAHT25-PS	Above numbers
32	REAHT32-PS	29, 30, 31, 32, 33, 34, 35

REAHT32


Parts	IIST		
No.	Description	Material	Note
18	Plate	Aluminum alloy	Hard anodized
19	Stopper	Aluminum alloy	Anodized
20	Adjustment bolt	Chromium molybdenum steel	Nickel plated
21	Hexagon nut	Carbon steel	Nickel plated
22	Linear guide		
23	Top cover	Aluminum alloy	Hard anodized
24	Dust cover	Special resin	
25	Magnet (for auto switch)	Rare earth magnet	
26	Parallel pin	Carbon steel	Nickel plated
27	Square nut for body mounting	Carbon steel	Nickel plated (accessory)
28	Hexagon socket taper plug	Carbon steel	Nickel plated
29*	Wear ring A	Special resin	
30*	Wear ring B	Special resin	
31*	Piston seal	NBR	
32*	Scraper	NBR	
33*	O-ring	NBR	
34*	O-ring	NBR	
35*	Cushion seal	NBR	

^{*} Seal kits are sets consisting of items 29 through 35 above, and can be ordered using the kit number for each bore size.

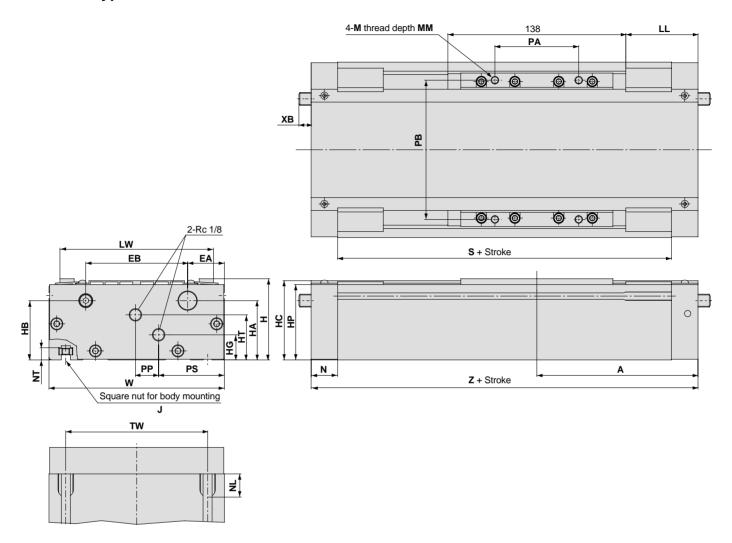
Series REAH


Dimensions/ø10

Single axis type/REAH

Dimensions/ø15, ø20, ø25

Single axis type/REAH


																(111111)
Model	Α	EA	EB	Н	HA	НВ	HC	HG	HP	HT	J	L	LL	LW	М	MM
REAH15	97	26.5	21	46	33.5	33.5	45	17	42	19	M5 x 0.8	106	44	71.5	M5 x 0.8	8
REAH20	102.5	26.5	22	54	42.5	41.5	53	16	50	23.5	M5 x 0.8	108	48.5	75.5	M5 x 0.8	8
REAH25	125	29	24	63	46	46	61.5	25	58.5	28	M6 x 1.0	138	56	86	M6 x 1.0	10

Model	N	NL	NT	Р	PA	PB	PP	S	TW	W	XB	Z	ZZ
REAH15	16.5	15	8	M5 x 0.8	50	62	21	161	65	88.5	_	194	17.5
REAH20	18	15	8	Rc 1/8	50	65	23	169	70	92.5	_	205	19.5
REAH25	20.5	18	9	Rc 1/8	65	75	27	209	75	103	9.5	250	23.5

Series REAH

Dimensions/ø25, ø32

Dual axis type/REAHT

																(mm)
Model	Α	EA	EB	Н	HA	НВ	нс	HG	HP	HT	J	LL	LW	М	MM	N
REAHT25	125	28.5	79	63	46	46	61.5	19.5	58.5	35	M6 x 1.0	56	119	M6 x 1.0	10	20.5
REAHT32	132.5	30	90	75	52.5	57.5	72.5	25	69.5	43	M8 x 1.25	63.5	130	M8 x 1.25	12	23

Model	NL	NT	PA	PB	PP	PS	S	TW	W	ХВ	Z
REAHT25	18	9	65	108	18	51	209	110	136	9.5	250
REAHT32	22.5	12	66	115	14	61	219	124	150	2	265

(mm)

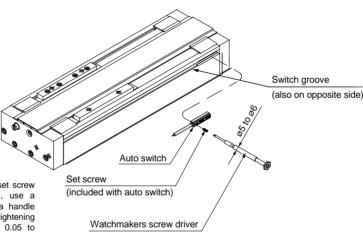
Proper Auto Switch Mounting Position for Stroke End Detection

Piping port surface A B

Proper auto switch mounting position

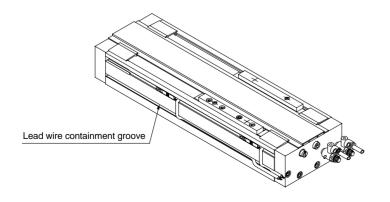
•		0.		()						
Auto switch		Α			В					
model Cylinder model	D-Z7□ D-Z80	D-Y7□W D-Y7□WV	D-Y5□ D-Y6□ D-Y7P D-Y7PV	D-Z7□ D-Z80	D-Y7□W D-Y7□WV	D-Y5□ D-Y6□ D-Y7P D-Y7PV				
REAH10	65.5	65.5	65.5	59.5	59.5	59.5				
REAH15	72	72	72	122	122	122				
REAH20	77.5	77.5	77.5	127.5	127.5	127.5				
REAH25	86	86	86	164	164	164				
REAHT25	86	86	86	164	164	164				
REAHT32	82	82	82	183	183	183				

Auto switch operating range


D-Y7□W D-Y7□WV Auto switch D-77 D-Y5□ D-Z80 D-Y6 D-Y7P D-Y7PV Cylinder model REAH10 8 REAH15 5 6 REAH20 5 6 5 REAH25 6 5 **REAHT25** 6 **REAHT32**

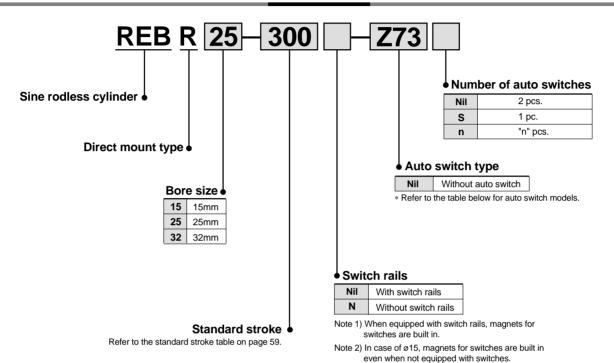
Note) Operating ranges are standards including hysteresis, and are not guaranteed. Large variations may occur depending on the surrounding environment. (variations on the order of ±30%)

Auto Switch Mounting


When mounting auto switches, they should be inserted into the cylinder's switch groove from the direction shown in the drawing on the right. After setting in the mounting position, use a flat head watchmakers screw driver to tighten the set screw which is included.

Note) When tightening the auto switch set screw (included with the auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter. The tightening torque should be approximately 0.05 to 0.1N·m.

Auto Switch Lead Wire Containment Groove


On models REAH20 and REAH25 a groove is provided on the side of the body (one side only) to contain auto switch lead wires. This should be used for placement of wiring.

Sine Rodless Cylinder

Series REBR Direct Mount Type/ø15, ø25, ø32

How to Order

Applicable auto switches / Refer to "Auto Switch Guide" (E274-A) for further details on auto switch units.

For Ø15 Refer to pages 84 and 85 for auto switch circuit diagrams.

-																
		0	-	ator lesis			Load vo	ltage	Auto	Lead wir	e length (m) Note 1)				
	Type Special function		Electrical entry	Indicator light	Wiring (output)	DC		AC	switch model	0.5 (Nil)	3 (L)	5 (Z)	Applic	able load		
	Deed		Grommet	Grommot		No	Quino	24V	5, 12V	100V or less	A90	•	•	-	IC circuit	
	Reed switch	-			Yes	2 wire	24 V	12V	100V	A93	•	•	_	_	Relay, PLC	
	SWITCH			res	3 wire (NPN equiv.)	-	5V	_	A96	•	•	_	IC circuit	_		
	Solid				3 wire (NPN)				F9N	•	•	_				
	state	te – Gr	Grommet	Grommet Yes	3 wire (PNP)	24V 12V	_	F9P	•	•	-	_	Relay, PLC			
	switch			2 wire				F9B	•	•	-					

Note 1) Lead wire length symbol 0.5m Nil (Example) F9N

For ø25, ø32

FOI ØZ	J, ØJZ														
	Special	Electrical	ator ht			Load voltage		Auto	Lead wir	e length (m) Note 1)				
Туре	function	entry	Indicator light	Wiring (output)	DC		AC	switch model	0.5 (Nil)	3 (L)	5 (Z)	Applic	able load		
D			V	3 wire	_	5V	-	Z 76	•	•	_	IC circuit	_		
	Reed _	Grommet	Grommet	Yes	2 wire	24V	12V	100V	Z73	•	•	•	_	D . D. O	
SWITCH			No	2 WIIE	24 V	5, 12V	100V or less	Z80	•	•	-	IC circuit	Relay, PLC		
						3 wire (NPN)		F 40V		Y59A	•	•	0	IC circuit	
0-11-1	-								3 wire (PNP)		5, 12V		Y7P	•	•
Solid state		Grommet	Yes	2 wire	24V	12V	_	Y59B	•	•	0	_	Relay, PLC		
switch	Diagnostic		163	3 wire (NPN)	240	F 40V		Y7NW	•	•	0	10	rtciay, r Lo		
	indication (2 color	ation		3 wire (PNP)		5, 12V		Y7PW	•	•	0	IC circuit			
	indicator)			2 wire		12V		Y7BW	•	•	0	_			

Note 1) Lead wire length symbol 0.5m Nil (Example) Y59A 3m L Y59AL

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Specifications

Fluid	Air					
Proof pressure	1.05MPa					
Maximum operating pressure	0.7MPa					
Minimum operating pressure	0.18MPa					
Ambient and fluid temperature	−10 to 60°C					
Piston speed	50 to 600mm/s					
Lubrication	Non-lube					
Stroke length tolerance	0 to 250st: $^{+1.0}_{0}$, 251 to 1000st: $^{+1.4}_{0}$, 1001st and up: $^{+1.8}_{0}$					
Mounting	Direct mount type					

Standard Strokes

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)	Maximum stroke with switch (mm)
15	150, 200, 250, 300, 350, 400 450, 500	1000	750
25 32	200, 250, 300, 350, 400, 450 500, 600, 700, 800	2000	1500

Note) Intermediate strokes can be arranged in 1mm increments.

Magnetic Holding Force

			(N)
Bore size (mm)	15	25	32
Holding force	137	363	588

Weights

(kg)

				(Ng)
Item	Bore size (mm)	15	25	32
Basic	REBR□ (with switch rail)	0.277	0.660	1.27
weight (for 0st)	REBR□-□N (without switch rail)	0.230	0.580	1.15
	ght per 50mm stroke ed with switch rail)	0.045	0.083	0.113
Additional wei (when not equ	ght per 50mm stroke ipped with switch rail)	0.020	0.050	0.070

Calculation method/Example: REBR25-500 (with switch rail) Basic weight ... 0.660kg, Additional weight ... 0.083kg/50mm, Cylinder stroke ... 500mm 0.660 + 0.083 x 500 \div 50 = 1.49kg

↑ Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Mounting

⚠ Caution

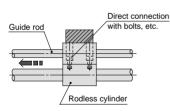
1. Take care to avoid nicks or other damage on the outside surface of the cylinder tube.

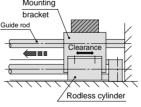
This can lead to a damage of the scraper and wear ring, which in turn can cause malfunction.

2. Pay attention to the rotation of the external slider.

Rotation should be controlled by connecting it to another shaft (linear guide, etc.).

3. Do not operate with the magnetic coupling out of position.


In case the magnetic coupling is out of position, push the external slider back into the correct position by hand at the end of the stroke (or correct the piston slider with air pressure).


- 4. The cylinder is mounted with bolts through the mounting holes in the end covers. Be sure they are tightened securely.
- 5. Be sure that both end covers are secured to the mounting surface before operating the cylinder.

Avoid operation with the external slider secured to the surface.

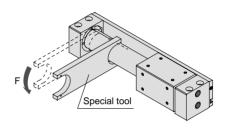
6. Do not apply a lateral load to the external slider.

When a load is mounted directly to the cylinder, variations in the alignment of each shaft center cannot be offset, which results in the generation of a lateral load that can cause malfunction. The cylinder should be operated using a connection method which allows for shaft alignment variations and deflection due to the cylinder's own weight. A drawing of a recommended mounting is shown in Figure 2.

Variations in the load and cylinder shaft alignment cannot be offset and may result in a malfunction. Shaft alignment variations are offset by providing clearance between the mounting bracket and cylinder. Moreover, the mounting bracket is extended above the cylinder shaft center, so that the cylinder is not subjected to moment.

Figure 1. Incorrect mounting

Figure 2. Recommended mounting

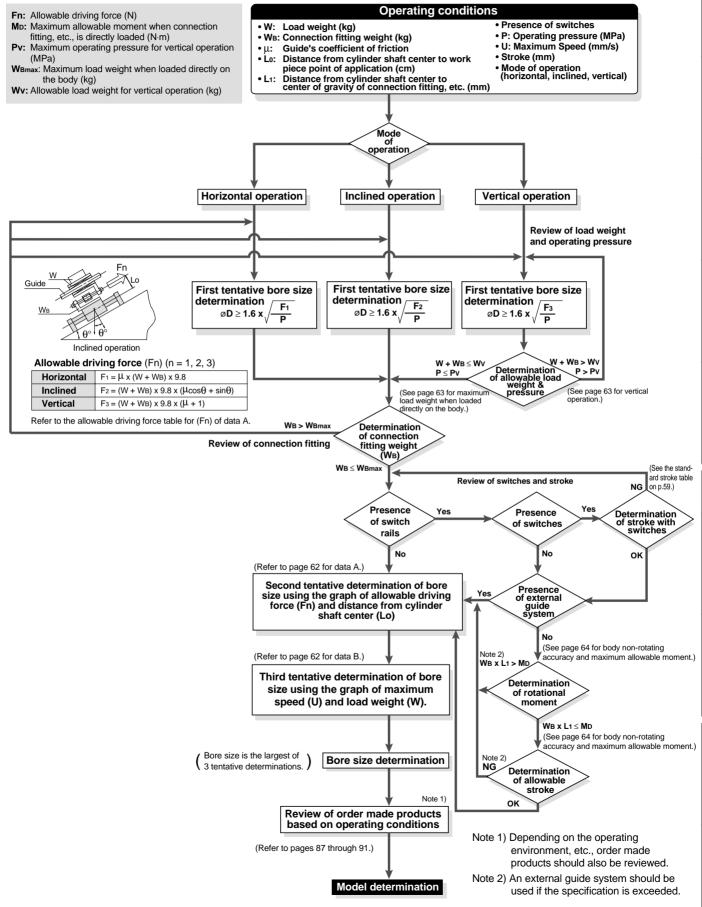

7. Use caution regarding the allowable load weight when operating in a vertical direction.

The allowable load weight when operating in a vertical direction (reference values on page 63) is determined by the model selection method. However, if a load greater than the allowable value is applied, the magnetic coupling may break and there is a possibility of dropping the load. When using this type of application, contact SMC regarding the operating conditions (pressure, load, speed, stroke, frequency, etc.).

Disassembly & Maintenance

⚠ Caution

1. Special tools are necessary for disassembly.

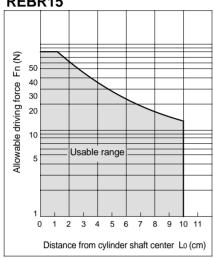


Special tool number list

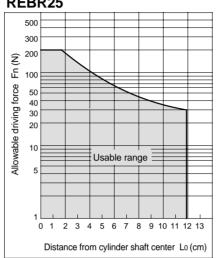
operiu. I	
No.	Applicable bore size (mm)
CYRZ-V	15
CYRZ-W	25, 32

Max. Speed

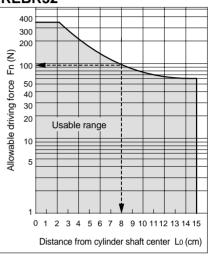
Series REBR Model Selection 1

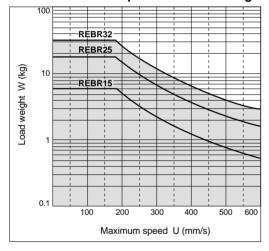


Design Parameters 1


Selection Method

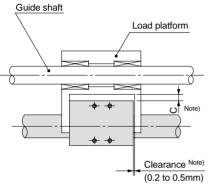
<Data A: Distance from cylinder shaft center ——— Allowable driving capacity>



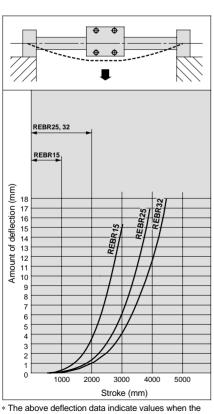

REBR25

REBR32

<Data B: Maximum speed Load weight chart >

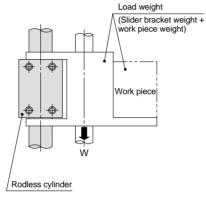

Max. Speed

Series REBR **Model Selection 3**


Design Parameters 2

Cylinder Self Weight Deflection

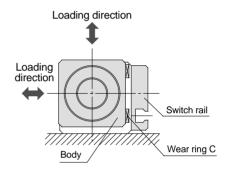
When the cylinder is mounted horizontally, deflection appears due to its own weight as shown in the data, and the longer the stroke, the greater the amount of variation in the shaft centers. Therefore, a connection method should be considered which allows for this variation as shown in the drawing.


Note) Referring to the self weight deflection in the figure below, provide clearance so that the cylinder is able to operate smoothly through the full stroke within the minimum operating pressure range, without touching the mounting surface or the load, etc.

external slider has moved to the middle of the stroke.

Vertical Operation

The load should be guided by a ball type bearing (LM guide, etc.). If a slide bearing is used, sliding resistance will increase due to the load weight and moment, and this can cause malfunction.


Cylinder bore size (mm)		Allowable load weight Wv (kg)	Max. operating pressure Pv (MPa)		
15	REBR15	7.0	0.65		
25	REBR25	18.5	0.65		
32	REBR32	30.0	0.65		

Note) Use caution, as operation above the maximum operating pressure can result in breaking of the magnetic coupling.

Maximum Load Weight when Loaded Directly on Body

When the load is applied directly to the body, it should be no greater than the maximum values shown in the table below.

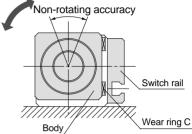
Model	Maximum load weight Wвтах (kg)
REBR 15	1.0
REBR 25	1.2
REBR 32	1.5

Design Parameters 3

Intermediate Stops

The cushion effect (smooth start-up, soft stop) exists only before the stroke in the stroke ranges indicated in the table below.

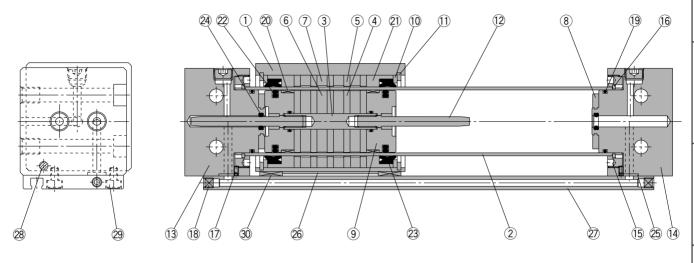
The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.

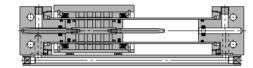

Cushion Stroke

Model	Stroke (mm)							
REBR15	25							
REBR25	30							
REBR32	30							

Body Non-rotating Accuracy and Maximum Allowable Moment (with Switch Rail) (Reference Values)

Reference values for non-rotating accuracy and maximum allowable moment at stroke end are indicated below.


Bore size (mm)	Non-rotating accuracy (°)	Max. allowable moment (M₀) (N⋅m)	Allowable Note 2) stroke (mm)
15	4.5	0.15	200
25	3.7	0.25	300
32	3.1	0.40	400



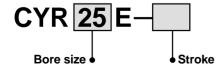
- Note 1) Avoid operations where rotational torque (moment) is applied. In such a case, the use of an external guide is recommended
- Note 2) The above reference values will be satisfied within the allowable stroke ranges. However, caution is necessary because as the stroke becomes longer the inclination (rotation angle) within the stroke can be expected to increase
- Note 3) When a load is applied directly to the body, the loaded weight should be no greater than the allowable load weights on page 63.

Construction/ø15, ø25, ø32

REBR15

Parts list

Parts	iist					
No.	Description	Material	N	ote		
1	Body	Aluminum alloy	Hard a	nodized		
2	Cylinder tube	Stainless steel				
3	Shaft	Stainless steel				
4	Piston side yoke	Rolled steel plate	Zinc chromated			
5	External slider side yoke	Rolled steel plate	Zinc ch	romated		
6	Magnet A	Rare earth magnet				
7	Magnet B	Rare earth magnet				
8	Bumper	Urethane rubber	Except REBR15			
9	Piston	Aluminum alloy	Chro	mated		
10	Spacer	Rolled steel plate	Nickel plated			
11	Snap ring	Carbon tool steel	Nicke	l plated		
40	Cooking sings	Stainless steel	REBR15, 25	Compound electroless		
12	Cushion ring	Brass	REBR32	nickel plated		
13	End cover A	Aluminum alloy	Hard a	nodized		
14	End cover B	Aluminum alloy	Hard a	nodized		
15	Attachment ring	Aluminum alloy	Hard anodized			
40	C type snap ring for shaft	Hard steel wire	Nickel plate	ed (REBR15)		
16	C type snap mig for snart	Stainless steel	REBR25,32			
17	Hexagon socket head set screw	Chromium steel	Nickel plated			
18	Hexagon socket head plug	Chromium steel	Nicke	l plated		
19	Cylinder tube gasket	NBR				


Parts list

	No.	Description	Material	Note
	20	Wear ring A	Special resin	
	21	Wear ring B	Special resin	
	22	Piston seal	NBR	
	23	Scraper	NBR	
	24	Cushion seal	NBR	
Ī	25	Switch rail gasket	NBR	
Ī	26	Magnetic shielding plate	Rolled steel plate	Chromated
	27	Switch rail	Aluminum alloy	Clear anodized
Ī	28	Magnet	Rare earth magnet	
	29	Hexagon socket head screw	Chromium steel	Nickel plated
	30	Wear ring C	Special resin	

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Content			
15	REBR15-PS	Above numbers			
25	REBR25-PS	19, 20, 21, 22, 23, 24, 25, 30			
32	REBR32-PS	10, 20, 21, 22, 20, 24, 20, 00			

Switch Rail Accessory Kits

Switch rail accessory kits

Bore size (mm)	Kit no.	Content
15	CYR15E-□	Above numbers
25	CYR25E-□	26, 27, 28, 29, 30
32	CYR32E-□	

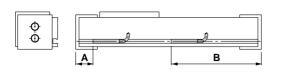
Note 1) ☐ indicates the stroke.

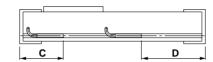
Note 2) Ø15 has internal magnets in the body.

Series REBR

Dimensions/ø15, ø25, ø32

(mm)


Model	Α	В	С	СВ	CR	D	F	G	GP	GW	Н	НА	НВ	НС	HP	HR	HS	HT
REBR15	12.5	8	4.2	2	0.5	17	8	5	33	31.5	32	30	17	31	_	30	8.5	_
REBR25	12.5	9.5	5.2	3	1	27.8	8.5	10	44	42.5	44	41	23.5	43	14.5	41	6.5	23.5
REBR32	19.5	11	6.5	3	1.5	35	10.5	16	55	53.5	55	52	29	54	20	51	7	29

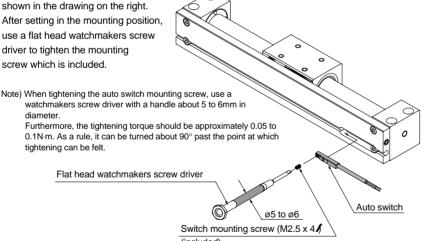

Model	JxE	K	L	LD	М	ММ	N	Р	PW	Q	QW	Т	TC	W	WP
REBR15	M5 x 0.8 x 7	14	53	4.3	5	M4 x 0.7	6	M5 x 0.8	32	84	18	21	17	25	_
REBR25	M6 x 1 x 8	15	70	5.6	6	M5 x 0.8	6.5	Rc 1/8	43	105	20	25.5	22.5	40	21.5
REBR32	M8 x 1.25 x 10	13	76	7	7	M6 x 1	8.5	Rc 1/8	54	116	26	33	28	50	27

Model	X	Υ	Z
REBR15	18	54.5	98
REBR25	28	72	125
REBR32	35	79	148

(mm)

Proper Auto Switch Mounting Position for Stroke End Detection

Ø 15 (mm)											
	Auto switch Bore model	Α		В		(3	D			
	size (mm)	D-A9□	D-F9□	D-A9□	D-F9□	D-A9□	D-F9□	D-A9□	D-F9□		
	15	17.5	21.5	76.5	72.5			56.5	60.5		


Note) Auto switches cannot be installed in Area C in the case of ø15

Ø25, Ø32

Auto switch	Α			3	(3	D		
Bore size (mm)	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W		D-Y5□ D-Y7□ D-Y7□W	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W	D-Z7□ D-Z8□	D-Y5□ D-Y7□ D-Y7□W	
25	22	22	101	103	47	47	78	78	
32	30.5	30.5	117.5	117.5	55.5	55.5	92.5	92.5	

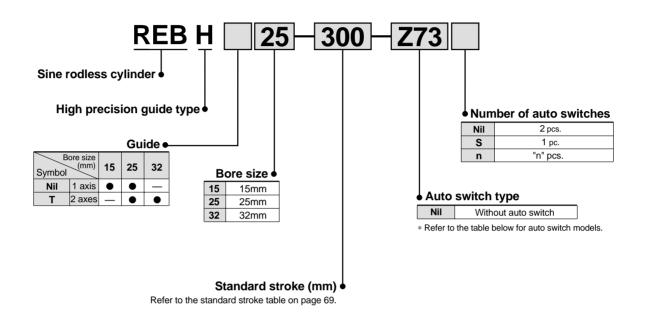
Auto Switch Mounting

When mounting auto switches, they should be inserted into the cylinder's switch groove from the direction shown in the drawing on the right. After setting in the mounting position, use a flat head watchmakers screw driver to tighten the mounting screw which is included.

Auto Switch Specifications

- (1) Switches (switch rail) can be added to the standard type (without switch rail). Switch rail accessory kits are mentioned on page 65 and can be ordered together with auto switches.
- (2) Refer to the separate disassembly instructions for switch magnet installation procedures.

Auto Switch Operation Range


(mm) D-A9□ Bore size D-F9□ (mm) D-Y7□W 8 5 15 7 25 9 32 9 6

Note 1) Switches cannot be mounted in some cases. Note 2) Operating ranges are standards including hysteresis, and are not guaranteed. Large variations may occur depending on the surrounding environment (variation on the order of ±30%).

Sine Rodless Cylinder

Series REBH High Precision GuideType

How to Order

Applicable auto switches / Refer to "Auto Switch Guide" (E-274-A) for further details on auto switch units Refer to pages 84 and 85 for auto switch circuit diagrams.

	Special function	Electrical entry	Indicator light	Wiring (output)	Load voltage			Auto swite	Auto switch model		Lead wire Note 1) length (m)				
Туре					DC		AC	Electrical entry direction		0.5 3		5	o ''	ble load	
								Perpendicular	In-line	(Nil)	(L)	(Z)			
hes	Reed switches	Grommet	Yes	3 wire (NPN equiv.)	_	5V	_	-	Z76	•	•	_	IC circuit	-	
is is				2 wire	24V	12V	100V	_	Z73	•	•	•	_	Relay, PLC	
LE S				2 WIIE		5V, 12V	100V or less	_	Z80	•	•	_	IC circuit		
		Grammat	rommet Yes	3 wire (NPN)	24V	5V, 12V	_	Y69A	Y59A	•	•	0	IC circuit		
s te	_			3 wire (PNP)				Y7PV	Y7P	•	•	0	IC CIICUIT		
St.				2 wire		12V		Y69B	Y59B	• • O	_	Relay,			
⋾⋛	Diagnostic	Gioniniet		3 wire (NPN)		5V, 12V		Y7NWV	Y7NW		IC circuit	PLC			
Solid state switches	indication (2 color			3 wire (PNP)				Y7PWV	Y7PW	•	•	0	IC Circuit		
_	indicator)			2 wire		12V		Y7BWV	Y7BW	•	•	0	_		

Note 1) Lead wire length symbol 0.5m Nil (Example) Y59A

3m L (Example) Y59AL 5m Z (Example) Y59AZ

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Max. Speed

Max. Speed 600 mm/s

Direct Mount Type High Precision Guide Type
REBR
REBH

Auto Switches

Order Made

Specifications

Bore size (mm)	15	25	32
Fluid		Air	
Action		Double acting	
Maximum operating pressure		0.7MPa	
Minimum operating pressure	0.2MPa		
Proof pressure	1.05MPa		
Ambient and fluid temperature	−10 to 60°C		
Piston speed	70 to 600mm/s		
Lubrication	Non-lube		
Stroke length tolerance	0 to 1.8mm		
Piping type	Centralized piping		
Piping port size	M5 x 0.8 Rc 1/8		

Standard Strokes

Bore size (mm)	Number of axes	Standard stroke (mm)	Maximum manufacturable stroke (mm)
15	1 axis	150, 200, 300, 400, 500	750
25		200, 300, 400, 500, 600, 800	4200
25	2 axes	200, 300, 400, 500, 600, 800, 1000	1200
32		200, 300, 400, 300, 600, 600, 1000	1500

Note 1) Strokes exceeding the standard strokes are available as a special order.

Note 2) Intermediate strokes other than order made (refer to page 91 for XB10) are available by special order.

Weights

								(kg)
Madel	Standard stroke mm							
Model	150	200	300	400	500	600	800	1000
REBH15	2.5	2.7	3.2	3.6	4.1	_	_	_
REBH25	_	5.3	6.0	6.6	7.3	8.0	9.4	_
REBHT25	_	6.2	7.3	8.3	9.4	10.4	12.5	14.6
REBHT32	_	9.6	10.7	11.9	13.0	14.2	16.5	18.8

Magnetic Holding Force

			(N)
Bore size (mm)	15	25	32
Holding force	137	363	588

Theoretical Output

							(N)
Bore size	e size Piston		oerati	ng pre	essure	e (MP	a)
(mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7
15	176	35	52	70	88	105	123
25	490	98	147	196	245	294	343
32	804	161	241	322	402	483	563

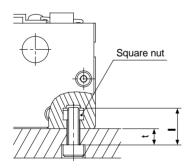
Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²).

Specific Product Precautions

Be sure to read before handling. Refer to pages 92 through 94 for safety instructions and actuator precautions.

Mounting

⚠ Caution


1. The interior is protected to a certain extent by the top cover, however, when performing maintenance, etc., take care not to cause scratches or other damage to the cylinder tube, slide table or linear guide by striking them or placing objects on them.

The bore and exterior of tubes are manufactured to precise tolerances, so that even a slight deformation can cause malfunction.

- 2. Since the slide table is supported by precision bearings, do not apply strong impacts or large moment, etc., when mounting work pieces.
- 3. Mounting of the cylinder body

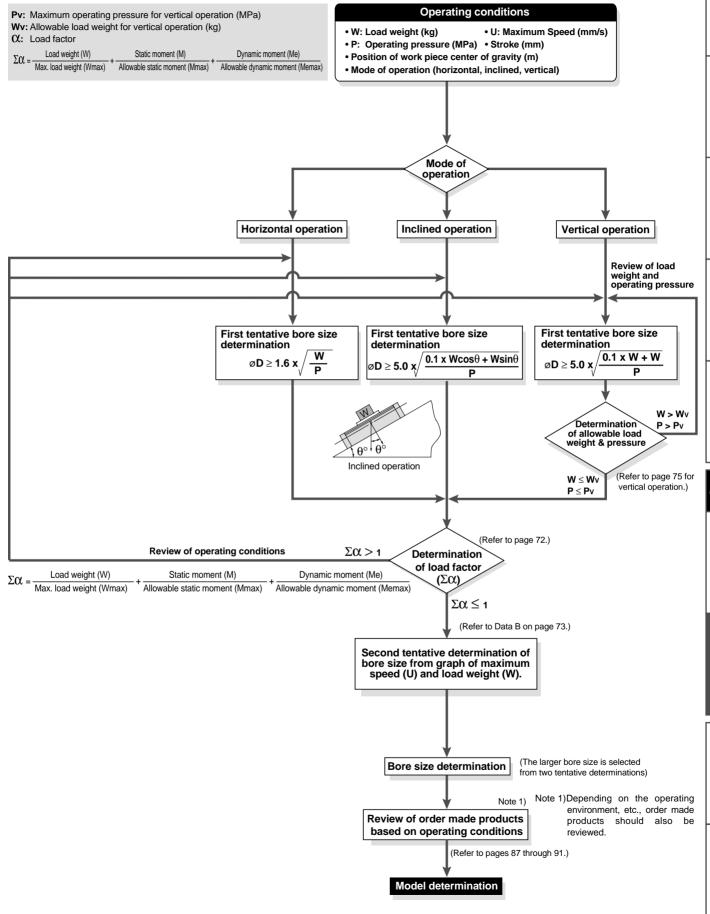
The body is mounted using the square nuts, which are included, in the two T-slots on the bottom of the body. Refer to the table below for mounting bolt dimensions and tightening torque.

Мо	del	REBH15	REBH25	REBHT25	REBHT32
Bolt	Screw size	M5 x 0.8	M6	x 1.0	M8 x 1.25
dimensions	Dimension t	/ 8	/ 9		/ 12
Tightening torque	N·m	2.65	4	1.4	13.2

Operation

⚠ Caution

1. The unit can be used with a direct load within the allowable range, but when connecting to a load which has an external guide mechanism, careful alignment is necessary.


Since variation of the shaft center increases as the stroke becomes longer, a connection method should be devised which allows for this displacement.

- 2. Since the guide is adjusted at the time of shipment, unintentional movement of the adjustment setting should be avoided.
- 3. Contact SMC before operating in an environment where there will be contact with chips, dust (paper scraps, thread scraps, etc.) or cutting oil (gas oil, water, hot water, etc.).
- 4. Do not operate with the magnetic coupling out of position.

In case the magnetic coupling is out of position, push the external slider back into the correct position by hand at the end of the stroke (or correct the piston slider with air pressure).

Max. Speed

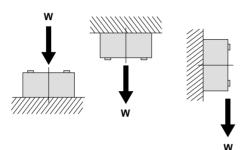
Series REBH **Model Selection 1**

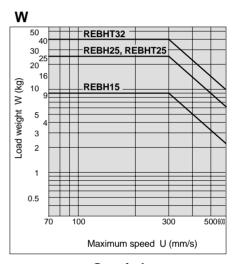
Series REBH Model Selection 2

Design Parameters 1

The maximum load weight and allowable moment will differ depending on the work piece mounting method, cylinder mounting orientation and piston speed.

A determination of suitability for use should be performed so that the total ($\Sigma C n$) of the load factors (C n) for each weight and moment does not exceed 1.

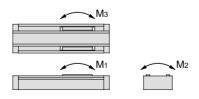


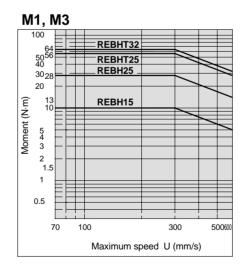

Design Parameters

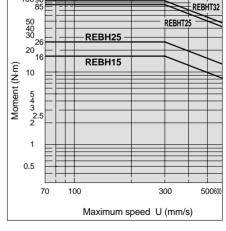
Load weight

Max. load weight (kg)

Model	Wmax
REBH15	9
REBH25	25
REBHT25	23
REBHT32	40

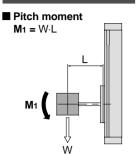

<Graph 1>

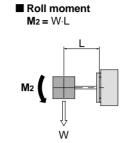

M2

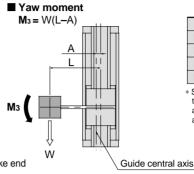

Moment

Allowable moment (Static moment/Dynamic moment)

			(N·m)
Model	M ₁	M ₂	Мз
REBH15	10	16	10
REBH25	28	26	28
REBHT25	56	85	56
REBHT32	64	96	64



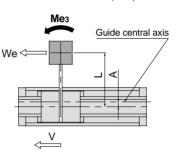



<Graph 2>

<Graph 3>

Static moment Moment generated by the self weight of the load even when the cylinder is stopped

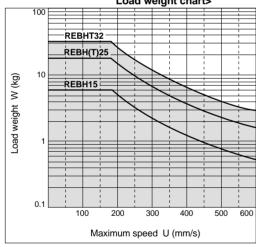
(mm) Model Α REBH15 17.5 REBH25 23.5 REBHT25 0* REBHT32 0*


Since there are 2 guides, the guides' central axis and the cylinder's central axis are the same.

Dynamic moment Moment generated by the load equivalent to the impact at the stroke end

We = $5 \times 10^{-3} \cdot W \cdot g \cdot U$ We: Load equivalent to impact [N] W: Load weight [kg] Maximum speed [mm/s] : Gravitational acceleration (9.8m/s²) ■ Pitch moment $Me_1 = 1/3 \cdot We \cdot L$

Mea


■ Yaw moment $Me_3 = 1/3 \cdot We(L-A)$

(mm) Model Α REBH15 17.5 REBH25 23.5 REBHT25 0* REBHT32 0*

Since there are 2 guides, the guides' central axis and the cylinder's central axis are the same.

<Data B: Maximum speed Load weight chart>

Series REBH **Model Selection 3**

Selection Calculation -

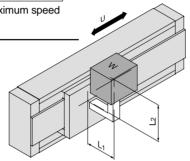
The selection calculation finds the load factors (α n) of the items below, where the total (α n) does not exceed 1.

$$\Sigma \Omega n = \Omega_1 + \Omega_2 + \Omega_3 \le 1$$

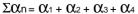
Item	Load factor αn	Note
1. Max. load weight	α 1 = W/Wmax	Review W. Wmax is the maximum load weight.
2. Static moment	Q 2 = M/Mmax	Review M ₁ , M ₂ , M ₃ . Mmax is the allowable moment.
3. Dynamic moment	C(3 = Me/Memax	Review Me1, Me3. Memax is the allowable moment.

U: Maximum speed

Calculation examples


Operating conditions

Cylinder: REBH15

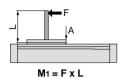

Mounting: Horizontal wall mounting Maximum speed: U = 500 [mm/s]

Load weight: W = 1 [kg] (excluding weight of arm section)

L1 = 200 [mm]L2 = 200 [mm]

ltem	Load factor Ωn	Note
1. Maximum load weight	C(1 = W/Wmax = 1/3 = 0.111 = 0.333	Review W. (For Wmax, find the value in <graph 2=""> when U = 500mm/s.)</graph>
2. Static moment	$M_2 = W \cdot L_1$ $W = 1 [kg]$ = 10 \cdot 0.2 = 2 [N \cdot m] $CL_2 = M_2/M_2 \text{ max}$ = 2/16 = 0.125	Review M2. Since M1 & M3 are not generated, review is unnecessary.
3. Dynamic moment Mea Guide central axis Met	$We = 5 \times 10^{-3} \cdot W \cdot g \cdot U$ $= 5 \times 10^{-3} \cdot 1.9.8 \cdot 500$ $= 25 [N]$ $Me3 = 1/3 \cdot We(L2-A)$ $= 1/3 \cdot 25 \cdot 0.182$ $= 1.52 [N \cdot m]$ $O(3 = Me3/Me3 max)$ $= 1.52/6$ $= 0.25$	Review Mes. (For Memax, find the value in <graph 2=""> when U = 500mm/s.)</graph>
We W	Me1 = 1 /3·We·L1 = 1/3·25·0.2 = 1.6 [N·m] Q4 = Me1/Me1 max = 1.6/6 = 0.27	Review Me1. (For Memax, find the value in <graph 2=""> when U = 500mm/s.)</graph>

= 0.333 + 0.125 + 0.25 + 0.27


= 0.978 Can be used based on $\Sigma \alpha = 0.978 \le 1$.

Series REBH **Model Selection 4**

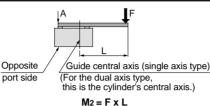

Design Parameters 2

Table Deflection

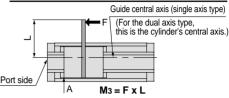

Table deflection due to pitch moment load

Table deflection due to roll moment load

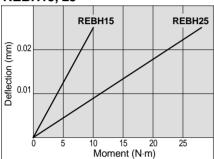
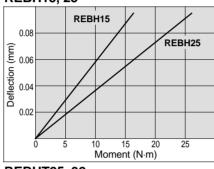
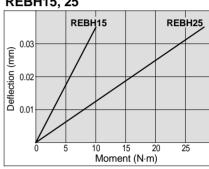
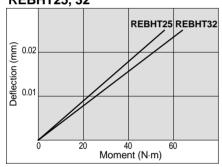


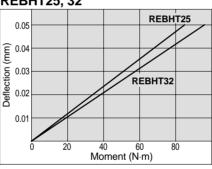
Table deflection due to yaw moment load

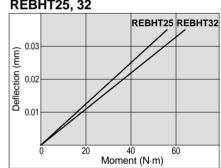


Note) Deflection: Displacement of section A when force acts on section F


REBH15, 25


REBH15, 25


REBH15, 25


REBHT25, 32

REBHT25, 32

REBHT25, 32

Vertical Operation

When using in vertical operation, prevention of work piece dropping due to breaking of the magnetic coupling should be considered. The allowable load weight and maximum operating pressure should be as shown in the table below.

Model	Allowable load weight Wv (kg)	Max. operating pressure Pv (MPa)
REBH15	7.0	0.65
REBH25	18.5	0.65
REBHT25	18.5	0.65
REBHT32	30.0	0.65

Intermediate Stops

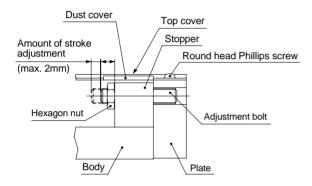
The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.

The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or a return from an intermediate stop using an external stopper, etc.

Cushion stroke

Model	Stroke (mm)
REBH15	25
REBH25	30
REBHT25	30
REBHT32	30

Series REBH


Stroke Adjustment

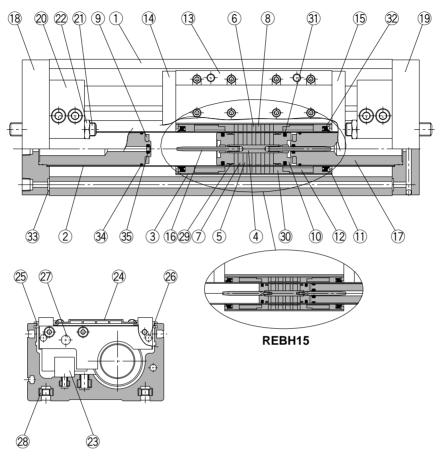
The adjustment bolt is adjusted to the optimum position for smooth acceleration and deceleration at the time of shipment, and should be operated at the full stroke. When stroke adjustment is necessary, the maximum amount of adjustment on one side is 2mm. (Do not adjust more than 2mm, as it will not be possible to obtain smooth acceleration and deceleration.)

Do not adjust based on the stopper's movement, as this can cause cylinder damage.

Stroke Adjustment

Loosen the round head Phillips screws, and remove the top covers and dust covers (4pcs.). Then loosen the hexagon nut, and after performing the stroke adjustment from the plate side with a hexagon wrench, retighten and secure the hexagon nut.

Adjustment Bolt Position (at Shipment), Hexagon Nut Tightening Torque


Model	T (mm)	Tightening torque (N⋅m)
REBH15	7	1.67
REBH25	9	
REBHT25	9	3.14
REBHT32	9	

After adjusting the stroke, replace the top covers and dust covers. Tighten the round head Phillips screws for securing the top covers with a torque of 0.58N·m.

Construction/ø15, ø25

Single axis type/REBH

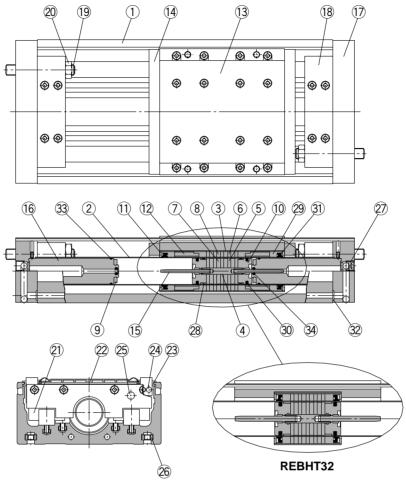
Parts list

No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Cylinder tube	Stainless steel	
3	External slider tube	Aluminum alloy	
4	Shaft	Stainless steel	
5	Piston side yoke	Rolled steel plate	Zinc chromated
6	External slider side yoke	Rolled steel plate	Zinc chromated
7	Magnet A	Rare earth magnet	
8	Magnet B	Rare earth magnet	
9	Bumper	Urethane rubber	Except REBH15
10	Piston	Aluminum alloy	Chromated
11	Spacer	Rolled steel plate	Nickel plated
12	Space ring	Aluminum alloy	Chromated
13	Slide table	Aluminum alloy	Hard anodized
14	Side plate A	Aluminum alloy	Hard anodized
15	Side plate B	Aluminum alloy	Hard anodized
16	Cushion ring	Stainless steel	Compound electroless nickel plated
17	Internal stopper	Aluminum alloy	Anodized
18	Plate A	Aluminum alloy	Hard anodized

Replacement parts: Seal kits

Bore size (mm)	Kit no.	Contents
10	REBH15-PS	Above numbers
15	REBH25-PS	29, 30, 31, 32, 33, 34, 35

Parte liet


Parts	list		
No.	Description	Material	Note
19	Plate B	Aluminum alloy	Hard anodized
20	Stopper	Aluminum alloy	Anodized
21	Adjustment bolt	Chromium molybdenum steel	Nickel plated
22	Hexagon nut	Carbon steel	Nickel plated
23	Linear guide		
24	Top cover	Aluminum alloy	Hard anodized
25	Dust cover	Special resin	
26	Magnet (for auto switch)	Rare earth magnet	
27	Parallel pin	Carbon steel	Nickel plated
28	Square nut for body mounting	Carbon steel	Nickel plated (accessory)
29	Wear ring A	Special resin	
30	Wear ring B	Special resin	
31	Piston seal	NBR	
32	Scraper	NBR	
33	O-ring	NBR	
34	O-ring	NBR	
35	Cushion seal	NBR	

Sine Rodless Cylinder High Precision Guide Type Series REBH

Series REBH

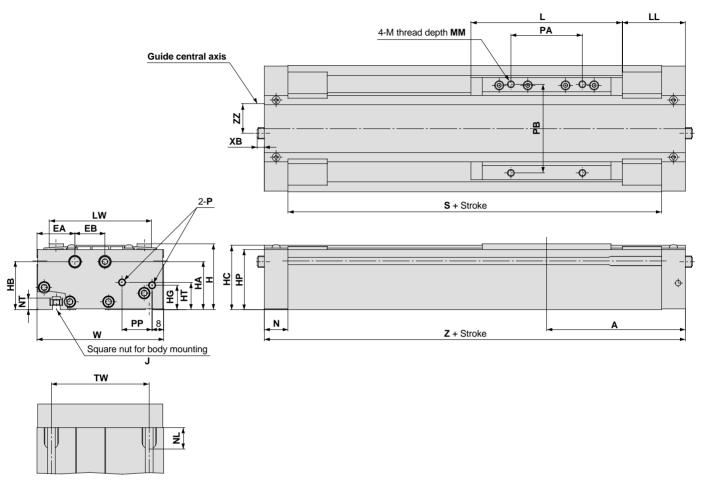
Construction/ø25, ø32

Dual axis type/REBHT

Parts list

raits	ง แอเ		
No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Cylinder tube	Stainless steel	
3	External slider tube	Aluminum alloy	
4	Shaft	Stainless steel	
5	Piston side yoke	Rolled steel plate	Zinc chromated
6	External slider side yoke	Rolled steel plate	Zinc chromated
7	Magnet A	Rare earth magnet	
8	Magnet B	Rare earth magnet	
9	Bumper	Urethane rubber	
10	Piston	Aluminum alloy	Chromated
11	Spacer	Rolled steel plate	Nickel plated
12	Space ring	Aluminum alloy	Chromated (except REBHT32)
13	Slide table	Aluminum alloy	Hard anodized
14	Side plate	Aluminum alloy	Hard anodized (except REBHT32)
4-		Stainless steel	REBHT25 Compound electroless
15	Cushion ring	Brass	REBHT32 nickel plated
16	Internal stopper	Aluminum alloy	Anodized
17	Plate	Aluminum alloy	Hard anodized

Replacement parts: Seal kits

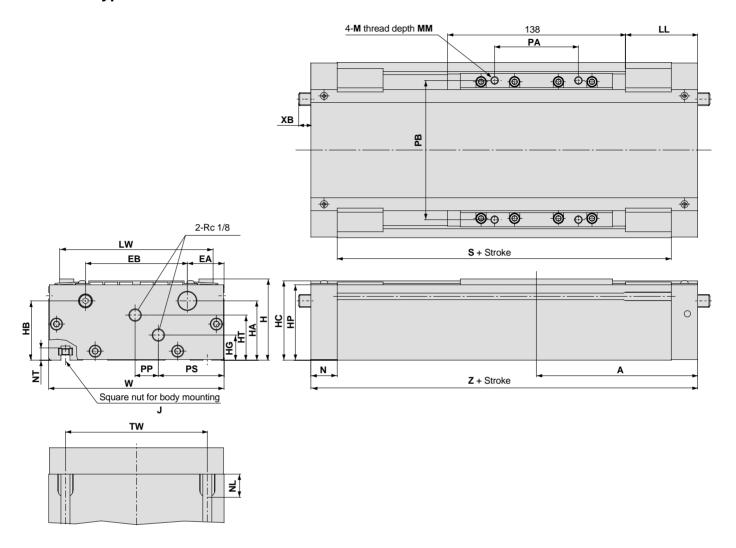

<u> </u>		
Bore size (mm)	Kit no.	Contents
25	REBHT25-PS	Above numbers
32	REBHT32-PS	28, 29, 30, 31, 32, 33, 34

Parts list

No.	Description	Material	Note
18	Stopper	Aluminum alloy	Anodized
19	Adjustment bolt	Chromium molybdenum steel	Nickel plated
20	Hexagon nut	Carbon steel	Nickel plated
21	Linear guide		
22	Top cover	Aluminum alloy	Hard anodized
23	Dust cover	Special resin	
24	Magnet (for auto switch)	Rare earth magnet	
25	Parallel pin	Carbon steel	Nickel plated
26	Square nut for body mounting	Carbon steel	Nickel plated (accessory)
27	Hexagon socket head taper plug	Carbon steel	Nickel plated
28	Wear ring A	Special resin	
29	Wear ring B	Special resin	
30	Piston seal	NBR	
31	Scraper	NBR	
32	O-ring	NBR	
33	O-ring	NBR	
34	Cushion seal	NBR	

Dimensions/ø15, ø25

Single axis type/REBH


																(mm)
Model	Α	EA	EB	Н	HA	НВ	нс	HG	HP	HT	J	L	LL	LW	М	MM
REBH15	97	26.5	21	46	33.5	33.5	45	17	42	19	M5 x 0.8	106	44	71.5	M5 x 0.8	8
REBH25	125	29	24	63	46	46	61.5	25	58.5	28	M6 x 1.0	138	56	86	M6 x 1.0	10

Model	N	NL	NT	Р	PA	РВ	PP	S	TW	W	XB	Z	ZZ
REBH15	16.5	15	8	M5 x 0.8	50	62	21	161	65	88.5	_	194	17.5
REBH25	20.5	18	9	Rc 1/8	65	75	27	209	75	103	9.5	250	23.5

Series REBH

Dimensions/ø25, ø32

Dual axis type/REBHT

																(111111)
Model	Α	EA	EB	Н	HA	НВ	НС	HG	HP	HT	J	LL	LW	M	MM	N
REBHT25	125	28.5	79	63	46	46	61.5	19.5	58.5	35	M6 x 1.0	56	119	M6 x 1.0	10	20.5
REBHT32	132.5	30	90	75	52.5	57.5	72.5	25	69.5	43	M8 x 1.25	63.5	130	M8 x 1.25	12	23

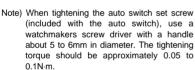
Model	NL	NT	PA	PB	PP	PS	S	TW	W	ХВ	Z
REBHT25	18	9	65	108	18	51	209	110	136	9.5	250
REBHT32	22.5	12	66	115	14	61	219	124	150	2	265

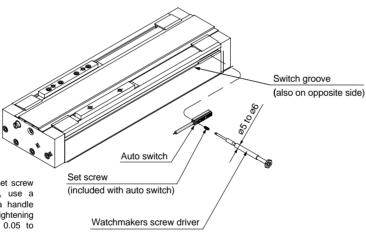
Proper Auto Switch Mounting Position for Stroke End Detection

Piping port surface Φ В

Proper auto switch mounting position

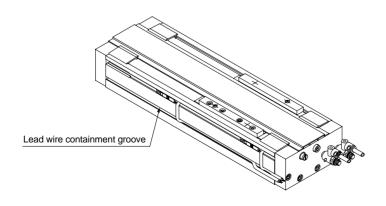
Proper auto switch mounting position (mm)													
Auto switch		Α		В									
model Cylinder model	D-Z7□ D-Z80	D-Y7□W D-Y7□WV	D-Y5 D-Y6 D-Y7P D-Y7PV	D-Z7□ D-Z80	D-Y7□W D-Y7□WV	D-Y5 D-Y6 D-Y7P D-Y7PV							
REBH15	72	72	72	122	122	122							
REBH25	86	86	86	164	164	164							
REBHT25	86	86	86	164	164	164							
REBHT32	82	82	82	183	183	183							


Auto switch operating range

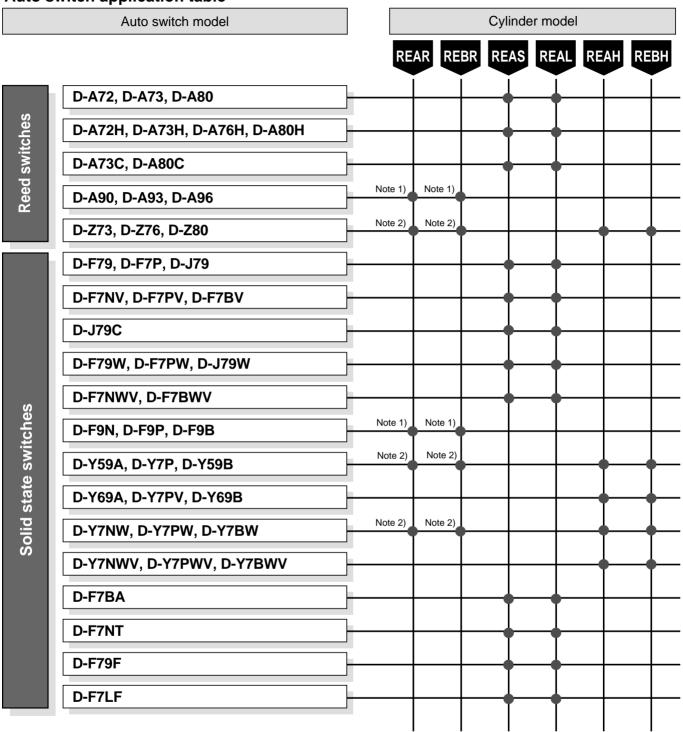

Auto switch D-Y7□W D-Y7□WV **D-Z7**□ D-Y5□ D-Y6□ D-Y7P D-Z80 Cylinder model REBH15 6 REBH25 6 5 REBHT25 6 5 REBHT32

Note) Operating ranges are standards including hysteresis, and are not guaranteed. Large variations may occur depending on the surrounding environment. (variations on the order of ±30%)

Auto Switch Mounting


When mounting auto switches, they should be inserted into the cylinder's switch groove from the direction shown in the drawing on the right. After setting in the mounting position, use a flat head watchmakers screw driver to tighten the set screw which is included.

Auto Switch Lead Wire Containment Groove


On model REBH25 a groove is provided on the side of the body (one side only) to contain auto switch lead wires. This should be used for placement of wiring.

Max. Speed

Series REA/REB Auto Switch Specifications

Auto switch application table

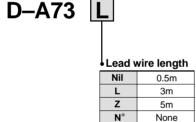
- Note 1) Indicates auto switches for REAR10/15/20 and REBR15.
- Note 2) Indicates auto switches for REAR25/32/40 and REBR25/32.
- Note 3) Refer to "Auto Switch Guide" (E274-A) for detailed specifications (specifications, dimensions, etc.) of switch units.

Series REA/REB Auto Switch Specifications

⚠ Specific Product Precautions

Before handling auto switches, be sure to read "Auto Switch Precautions" on pages 96 through 98.

Auto Switch Common Specifications


Туре	Reed switch	Solid state switch					
Leakage current	None	3 wire: 10µA or less 2 wire: 1mA or less					
Actuation time	1.2ms	1ms or less Note 2)					
Impact resistance	300m/s²	1000m/s²					
Insulation resistance	50MΩ or more at a 500VDC (between lead wire & case)						
Withstand voltage	1500VAC for 1 minute Note 1) (between lead wire & case)	1000VAC for 1 minute (between lead wire & case)					
Ambient temperature	−10 to 60°C						

Note 1) Electrical entry: Connector type (A73C, A80C, C73C) and A9 are 1000VAC for 1 minute (between lead wire and case).

Note 2) Except for solid state auto switch with timer (F7NTL).

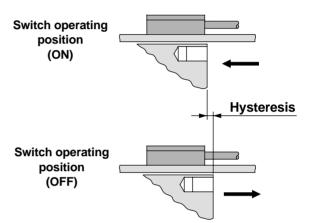
Lead Wire Length

Lead wire length indication (Example)

* Applicable only to connector type switch D-□□C.

Note 1) Lead wire length Z: 5m applicable auto switches
Reed switch: D-A73(C)(H)/A80C, D-Z73
Solid state switch: All models are produced upon receipt of order (standard procedure). Except for D-F9/F7□WV.

Note 2) The standard lead wire length is 3m for solid state switches with timer and water resistant solid state switches with 2 color indication. (0.5m length is not available.)


Note 3) The standard lead wire lengths are 3m and 5m for strong magnetic field resistant 2 color indicator type solid state switches. (0.5m length is not available.)

Part nos. for lead wires with connector (applicable only to connector type switches)

Model	Lead wire length
D-LC05	0.5m
D-LC30	3m
D-LC50	5m

Auto Switch Hysteresis

The distance from the position at which movement of the external slider turns on an auto switch, to the point at which reverse movement turns off the switch is called hysteresis. This hysteresis is included in part (one side) of the operating range.

The difference between the switch operating position (ON) and the return position (OFF) is usually 2mm or less for reed switches and 1mm or less for solid state switches. Contact SMC regarding applications in which hysteresis becomes a problem.

Recommended Relays

Fuji Electric Co., Ltd.	HH5
OMRON Corporation	MY
Matsushita Electric Works, Ltd.	HC
Tokyo Electric	MPM
IDEC IZUMI CORPORATION	RM
Mitsubishi Electric Corporation	RD

Series REA/REB

Auto Switch Specifications

Contact Protection Box/CD-P11, CD-P12

1.

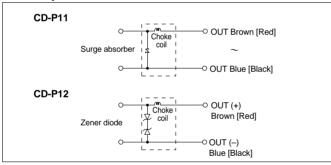
<Applicable switches>

D-A7/A8, D-A7 H/A80H, D-A73C, A80C, D-Z7/Z8, D-A9

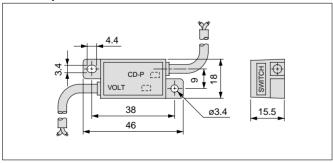
The above auto switches do not have built-in contact protection circuits.

- 1. The operating load is an induction load.
- 2. The length of wiring to the load is 5m or more.
- 3. The load voltage is 100V or 200VAC.

A contact protection box should be used in any of the above cases, as the life of the contacts may be reduced. (They may stay on continuously.) Since this effect is especially strong in the case of type D-A72(H), a contact protection box should always be used, regardless of the type of load or length of wiring.

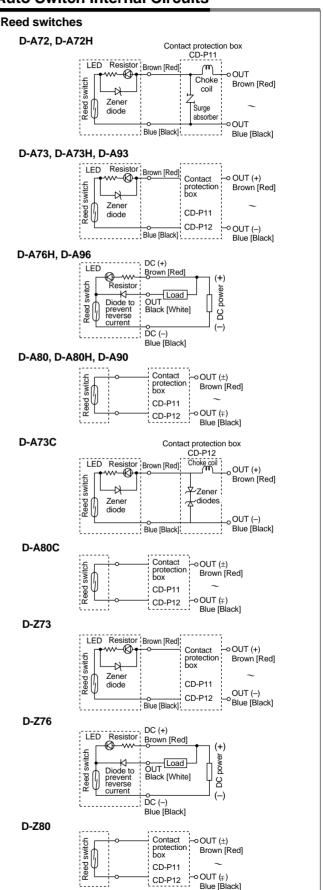

Contact protection box specifications

Part no.	CD-	·P11	CD-P12
Load voltage	100VAC	200VAC	24VDC
Max. load current	25mA	12.5mA	50mA


*Lead wire length —— Switch connection side 0.5m Load connection side 0.5m

Contact protection box internal circuits

Contact protection box dimensions



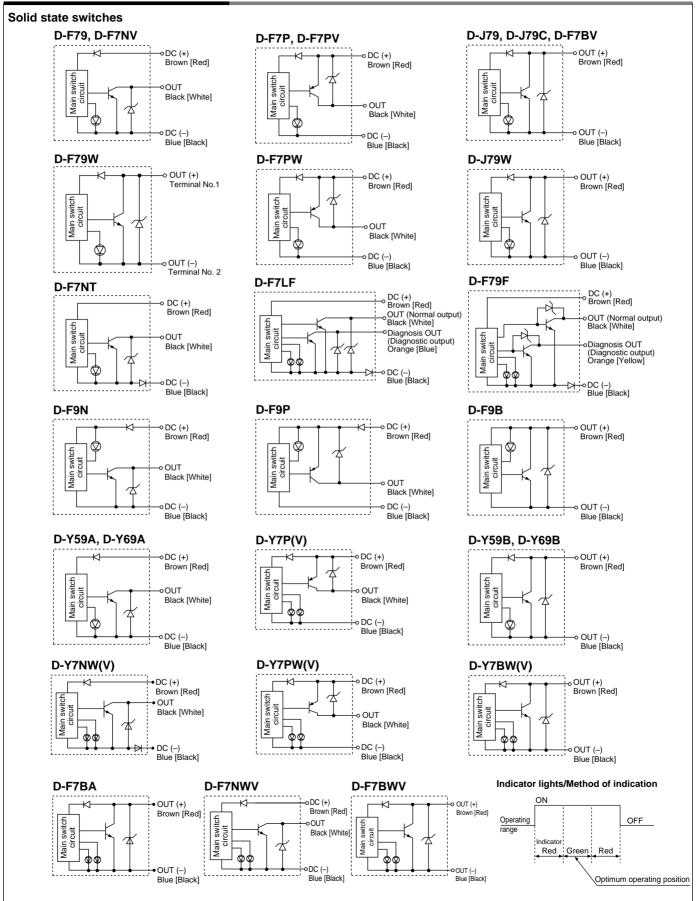
Contact protection box connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit.

Moreover, the switch unit should be kept as close as possible to the contact protection box, with a lead wire length of no more than 1m.

Auto Switch Internal Circuits

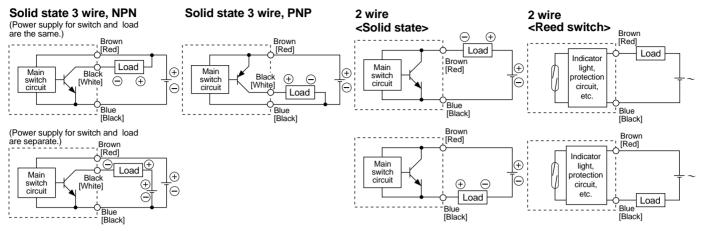
Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

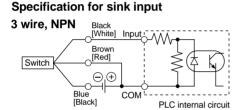


Series REA/REB

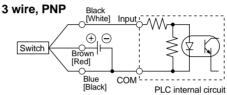
Auto Switch Specifications

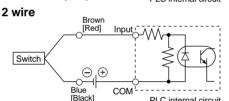
Auto Switch Internal Circuits

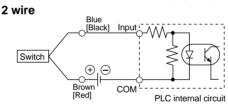

Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

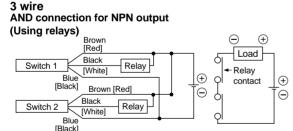

Series REA/REB Auto Switch Connections and Examples

Basic Wiring

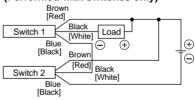

Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

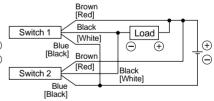

Examples of Connection to PLC (Programable Logic Controller)



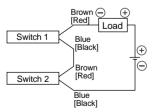


Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.




Connection Examples for AND (Series) and OR (Parallel)

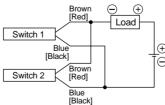
AND connection for NPN output (Performed with switches only)



OR connection for NPN output

The indicator lights will light up when both switches are turned ON.

2 wire with 2 switch AND connection


When two switches are connected in series, the load may malfunction because the load voltage will decline when in the ON state.

The indicator lights will light up if both of the switches are in the ON state.

Load voltage at ON =
$$\frac{\text{Power supply}}{\text{voltage}}$$
 - $\frac{\text{Residual}}{\text{voltage}}$ x 2 pcs.
= 24V - 4V x 2 pcs.
= 16 V

Example: Power supply is 24VDC. Voltage drop in switch is 4V.

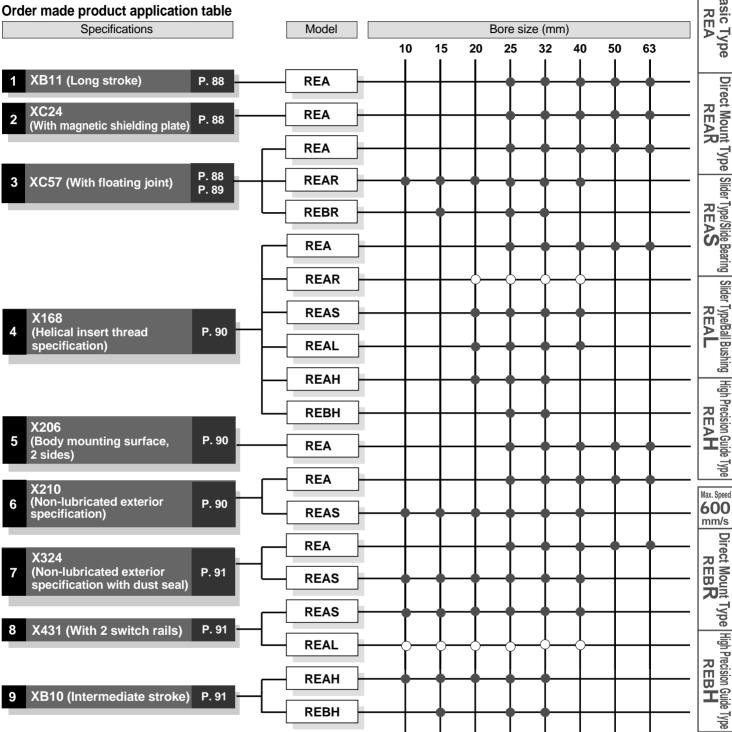
2 wire with 2 switch OR connection

<Solid state>
When two switches are connected in parallel, malfunction may occur because the load voltage will increase when in the OFF state.

Load voltage at OFF = $\frac{\text{Leakage}}{\text{current}} \times 2 \text{ pcs. } \times \frac{\text{Load}}{\text{impedance}}$ = $1 \text{mA} \times 2 \text{ pcs. } \times 3 \text{k}\Omega$ = 6 V

Example: Load impedance is $3k\Omega$. Leakage current from switch is 1mA.

<Reed switch> Because there is no current


leakage, the load voltage will not increase when turned OFF. However, due to the number of switches in the ON state, the indicator lights will sometimes dim or not light up, because of dispersion and reduction of the current flowing to the switches.

Series REA/REB Individual Order Made Specifications Contact SMC for detailed specifications, lead times and prices, etc.

Max. Speed

300 mm/s

Note) The applicable series and bore sizes of products are indicated by the "●" symbol. Contact SMC regarding products with the "O" symbol.

Series REA Order Made Specifications 1 Contact SMC for detailed specifications, lead times and prices, etc.

Symbol -XB11

REA Stroke -XB11

Long stroke (2001mm and up)

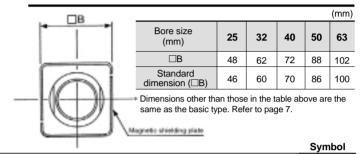
When the stroke exceeds 2000mm (2001mm and up)

Specifications

Applicable series	REA
Bore size	ø25 to ø63
Applicable stroke	2001mm and up

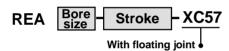
Symbol With magnetic shielding plate -XC24

Stroke


With magnetic shielding plate

Shields against leakage of magnetic flux from the external slider.

Specifications

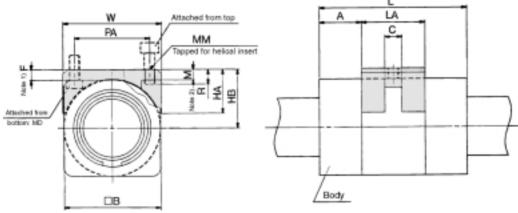

Applicable series	REA			
Bore size	ø25 to ø63			

Dimensions

With floating joint (REA)

-XC57

A special floating joint is added to the Series REA, and the labor for connections to the guide on the other axis (the load side) is reduced.


The attachment of the bolt to the floating joint and the load is not limited to the top or bottom.

Specifications

Fluid	Air
Cylinder bore size	ø25, ø32, ø40, ø50, ø63
Max. operating pressure	0.7MPa
Min. operating pressure	0.18MPa
Piston speed	50 to 300mm/s
Mounting orientation	Free
Auto switch	Not mountable

Note) Since the body of this cylinder is designed for connection with a floating joint, and cannot be connected to the bodies of standard products, contact SMC if necessary.

Construction/Dimensions

		-			-									(mm)
Model	Α	□В	С	F Note 1)	HA	НВ	L	LA	MM	MD	М	PA	R Note 2)	W
REA25	20	46	8.0	5.5	21	28.5	70	30	M5 x 0.8	M4	5	36	7	47
REA32	22.5	60	9.5	6.0	27.5	36	80	35	M6 x 1.0	M5	6	47	8	61
REA40	26	70	9.5	6.0	28.5	41	92	40	M6 x 1.0	M5	6	55	8	71
REA50	35	86	11	6.0	35	49	110	40	M8 x 1.25	M6	8	65	11	87
REA63	36	100	18	7.0	42	57	122	50	M8 x 1.25	M6	10	80	11	101

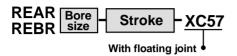
Note 1) Dimension F provides a clearance of 1mm between the body and the floating joint, but does not consider self weight deflection of the cylinder tube, etc. When put into operation, an appropriate value should be set which considers self weight deflection and alignment variations with respect to the other axis. (Refer to the self weight deflection table on page 5.)

Note 2) Use caution when attached from the top and operated at or above dimension R, because the end of the screw will contact the body, and a floating condition will not be maintained in some cases.

Max. Speed

REBH

(mm)


Series REA/REB Order Made Specifications 2 Contact SMC for detailed specifications, lead times and prices, etc.

With floating joint (REAR/REBR) Cont'd

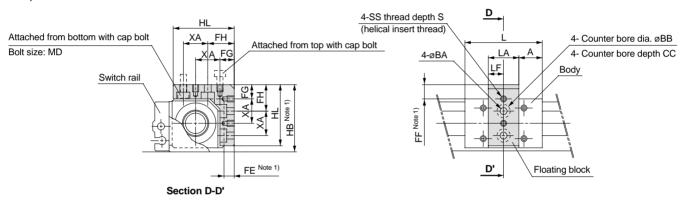
Symbol

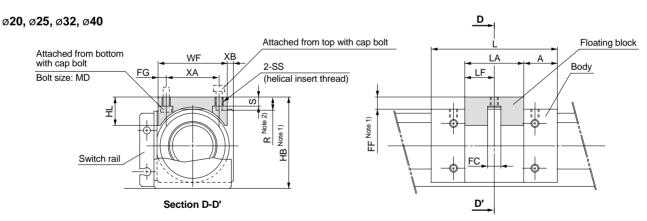
-XC57

A special floating joint is added to the Series REAR, and the labor for

connections to the guide on the other axis (the load side) is reduced. The attachment of the bolt to the floating joint and the load is not limited to the

top or bottom.


Specifications


	REAR	REBR				
Fluid	Air					
Cylinder bore size	ø10, ø15, ø20, ø25, ø32, ø40	ø15, ø25, ø32				
Max. operating pressure	0.7MPa					
Min. operating pressure	0.18MPa					
Piston speed	50 to 300mm/s 50 to 600mm					
Mounting	Direct mount type					
Auto switch	Mountable					

Note) Since the body of this cylinder is designed for connection with a floating joint, and cannot be connected to the bodies of standard products, contact SMC if necessary.

Construction/Dimensions

ø10, ø15

																					(,
Bore size	Α	BA	BB	CC	FC	FE Note 1)	FF Note 1)	FG	FH	HB Note 1)	I	L	LA	LF	MD	R Note 2)	S	SS	WF	XA	XB
ø10	11.5	3.4	6.5	3.3		5	7	7	13	33	30	38	15	7.5	МЗ	_	3.5	M3 x 0.5	-	12	_
ø15	18	4.5	8	4.4	l	4.5	6.5	7.5	14.5	38.5	35.5	53	17	8.5	M4	_	4.5	M4 x 0.7	I	14	_
ø20	16.5	_	_	_	6.5	_	6	4	_	45	14	62	29	14.5	МЗ	7	4.5	M4 x 0.7	34	26	3
ø25	20.5	_	_	_	8	_	7	4	—	51	17	70	29	14.5	M4	8	5.5	M5 x 0.8	39	31	3
ø32	21	_	_	_	9.5	_	7.5	4.5	_	62.5	22	76	34	17	M5	10	6.5	M6 x 1	50	41	3
ø40	25.5	_	_	_	9.5	_	7.5	7.5	_	74.5	28	90	39	19.5	M5	10	6.5	M6 x 1	60	45	3

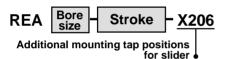
Note 1) FE, FF and HB provide a clearance of 1mm between the body and the floating joint, but do not consider self weight deflection of the cylinder tube, etc. When put into operation, an appropriate value should be set which considers self weight deflection and alignment variations with respect to the other axis. (Refer to the self weight deflection table on

Note 2) Use caution when attached from the top and operated at or above dimension R, because the end of the screw will contact the body, and a floating condition will not be maintained in some cases

Series REA/REB Order Made Specifications 3 Contact SMC for detailed specifications, lead times and prices, etc.

Symbol 4 Helical insert thread specification -X168

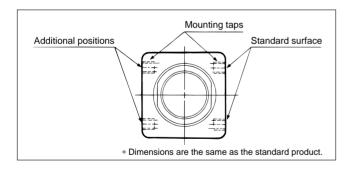
REA REAS **Bore Stroke** X168 size **REAL** Helical insert thread **REAH** specification **REBH**


The standard mounting threads have been changed to helical insert specifications.

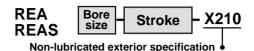
Specifications

Applicable series	REA, REAS, REAL, REAH, REBH					
Bore size	REA: ø25 to ø63 REAS, REAL: ø20 to ø40 REAH: ø20 to ø32 REBH: ø25 to ø32					

The mounting thread positions and size are the same as standard.



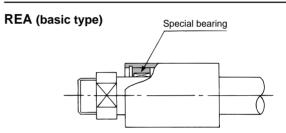
Mounting taps have been added on the surface opposite the standard positions.

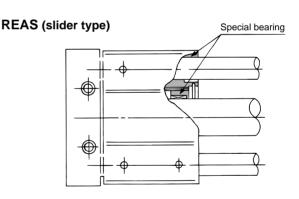

Specifications

90

Applicable series	REA
Bore size	ø25 to ø63

Symbol Non-lubricated exterior specification -X210

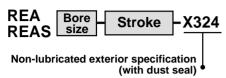



Suitable for environments where oils are not tolerated. A scraper is not installed. A separate version -X324 (with dust seal) is available for cases in which dust, etc., is scattered throughout the environment.

Specifications

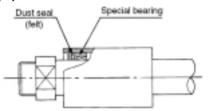
Applicable	series	REA, REAS
Bore size	REA	ø25 to ø63
Dore Size	REAS	ø10 to ø40

Construction

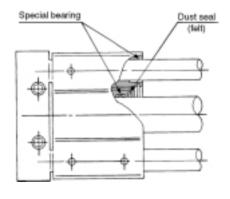

Symbol

-XB10

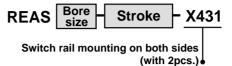
Series REA/REB Order Made Specifications 4 Contact SMC for detailed specifications, lead times and prices, etc.


This unit has non-lubricated exterior specifications, with a felt dust seal provided on the cylinder body.

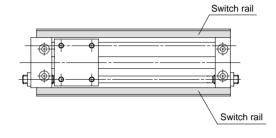
Specifications


Applicable	series	REA, REAS					
Bore size	REA	ø25 to ø63					
Dore Size	REAS	ø10 to ø40					

Construction


REA (basic type)

REAS (slider type)


Symbol Switch rail mounting on both sides (with 2pcs.) -X431

Effective in cases with switches when the stroke is short.

Specifications

Applicable series	REAS
Bore size	ø10 to ø40

9 Intermediate stroke

REAH Bore Stroke - XB10

(Refer to table below.) Intermediate stroke

Strokes

Bore size	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	650	700	750	800	850	900	950	1000
REAH10	•	0	•	0	0	0	•																				
REBH15	•	0	•	0	0	0	•	0	0	0	•	0	0	0	•												
REAH20			•	0	0	0	•	0	0	0	•	0	0	0	•	0	0	0	•				$\overline{}$				
RE ^A H25			•	_	0	_	•	_	0	_	•	_	0	_	•	_	0	_	•	0	0	0	•			/	
RE ^A HT25			•	_	0	_	•	_	0	_	•	_	0	_	•	_	0	_	•	0	0	0	•	0	0	0	•
REAHT32			•	_	0	_	•	_	0	_	•		0	_	•	_	0	_	•	0	0	0	•	0	0	0	•

- Standard strokes
- : Strokes available with -XB10
- —: Not available

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

△ Caution: Operator error could result in injury or equipment damage.

⚠ Warning: Operator error could result in serious injury or loss of life.

⚠ Danger : In extreme conditions, there is a possible result of serious injury or loss of life.

Note 1) ISO 4414: Pneumatic fluid power – Recommendations for the application of equipment to transmission and control systems

Note 2) JIS B 8370: General Rules for Pneumatic Equipment

Marning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.

Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.

2. Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if an operator is unfamiliar with it. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.

- 3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
 - 1.Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
 - 2. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
 - 3.Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back-pressure.)
- 4. Contact SMC if the product is to be used in any of the following conditions:
 - 1. Conditions and environments beyond the given specifications, or if product is used outdoors.
 - 2.Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
 - 3.An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Design

△Warning

1. There is a possibility of dangerous sudden action by air cylinders if sliding parts of machinery are twisted and changes of force occur.

In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.

2. A protective cover is recommended to minimize the risk of personal injury.

If a driven object and moving parts of a cylinder pose a danger of personal injury, design the structure to avoid contact with the human body.

3. Securely tighten all stationary parts and connected parts so that they will not become loose.

Particularly when a cylinder operates with high frequency or a cylinder is installed where there is a lot of vibration, ensure that all parts remain secure.

4. Consider a possible drop in circuit pressure due to a power outage, etc.

When a cylinder is used in a clamping mechanism, there is a danger of work pieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.

5. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by pneumatics, electricity or hydraulics, etc.

Design circuitry to prevent sudden lurching of driven objects.

When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.

Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions such as a power outage or a manual emergency stop.

8. Consider the action when operation is restarted after an emergency stop or abnormal stop.

Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

Selection

Marning

1. Check the specifications.

The products advertised in this catalog are designed only for use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions.

Consult SMC if you use a fluid other than compressed air.

2. Intermediate stops

When intermediate stopping of a cylinder piston is performed with a 3 position closed center type directional control valve, it is difficult to achieve stopping positions as accurate and minute as with hydraulic pressure, due to the compressibility of air.

Furthermore, since valves and cylinders, etc., are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in case it is necessary to hold a stopped position for an extended period.

△Caution

1. Operate within the limits of the maximum usable stroke.

Refer to the standard stroke table for the maximum usable stroke.

2. Operate the piston within a range such that collision damage will not occur at the end of the stroke.

Operate within a range such that damage will not occur when the piston having inertial force stops by striking the cover at the stroke end. Refer to the model selection pages for the range within which damage will not occur.

3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.

Series REA/REB Actuator Precautions 2

Be sure to read before handling.

Mounting

△Caution

1. Align carefully when connecting to a load having an external guide mechanism.

Since variation of the shaft center becomes greater as the stroke becomes longer, a connection method (floating mechanism) should be considered which allows for this variation.

Moreover, consideration should be given to the exclusive floating joint (XC57), which has been created for series REA , REAR and REBR.

- 2. When an external guide is used, connect the external slider and the load in such a way that there is no interference at any point within the stroke.
- 3. Do not scratch or gouge the sliding parts of the cylinder tube by striking or grasping them with other objects.

Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause faulty operation.

4. Do not use until you verify that the equipment can operate properly.

After mounting, repair or modification, etc., connect the air supply and electric power, and then confirm proper mounting by means of appropriate function and leak tests.

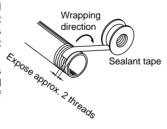
5. Instruction manual

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.

Keep the instruction manual where it can be referred to as needed.

Piping

△Caution


1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

2. Wrapping of sealant tape

When connecting pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.

Also, when sealant tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Lubrication

△Caution

1. Lubrication of cylinder

The cylinder has been lubricated for life at the factory and can be used without any further lubrication.

However, in the event that it will be lubricated, use class 1 turbine oil (with no additives) ISO VG32.

Stopping lubrication later may lead to malfunction due to the loss of the original lubricant. Therefore, lubrication must be continued once it has been started.

Air Supply

△Warning

1. Use clean air

If compressed air includes chemicals, synthetic oils containing organic solvents, salts or corrosive gases, etc., it can cause damage or malfunction.

∆Caution

1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be $5\mu m$ or finer.

2. Install an air dryer, after-cooler or water separator, etc.

Air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, after-cooler or water separator, etc.

3. Use the product within the specified range of fluid and ambient temperature.

Take measures to prevent freezing, since moisture in circuits will be frozen under 5°C, and this may cause damage to seals and lead to malfunction.

Refer to SMC's "Air Cleaning Equipment" catalog for further details on compressed air quality.

Operating Environment

△Warning

1. Do not use in environments where there is a danger of corrosion.

Refer to the construction drawings regarding cylinder materials.

2. In dusty locations or where water, oil, etc., splash on the equipment, install a protective cover, etc.

Contact SMC in cases where dust or water, etc., will be scattered throughout the area.

Maintenance

△Warning

1. Perform maintenance and inspections according to the procedure indicated in the instruction manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.

2. Removal of components and supply/exhaust of compressed air

When components are removed, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then cut off the supply pressure and electric power, and exhaust all compressed air from the system.

When machinery is restarted, confirm lurch prevention measures and proceed with caution.

1. Drain flushing

Remove drainage from air filters regularly. (Refer to specifications.)

Series REA/REB Specific Product Precautions 1

Be sure to read before handling.
Refer to pages 92 through 94 for safety instruction and actuator precautions.

Disassembly and Maintenance

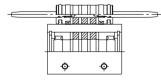
⚠ Warning

1. Use caution as the attractive force of the magnets is very strong.

When removing the external slider and piston slider from the cylinder tube for maintenance, etc., handle with caution, since the magnets installed in each slider have a very strong attractive force.

∧ Caution

1. Use caution when removing the external slider, as the piston slider will be directly attracted to it.


When removing the external slider or piston slider from the cylinder tube, first force the sliders out of their magnetically coupled positions, and then remove them individually when there is no longer any holding force. If they are removed while still magnetically coupled, they will be directly attracted to one another and will not come apart.

2. Do not disassemble the magnetic components (piston slider, external slider).

This can cause a loss of holding force and malfunction.

- 3. When disassembling to replace the seals and wear ring, refer to the separate disassembly instructions.
- 4. Note the direction of the external slider and piston slider.

Since the external slider and piston slider are directional for size $\varnothing 10$, refer to the drawings below when performing disassembly or maintenance. Put the external slider and piston slider together, and insert the piston slider into the cylinder tube so that they will have the correct positional relationship as shown in Figure 1. If they align as shown in Figure 2, reinsert the piston slider only, after turning it around 180°. If the direction is not correct, it will be impossible to obtain the specified holding force.

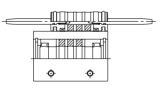


Figure 1. Correct position

Figure 2. Incorrect position

5. During disassembly, use caution in handling the cushion ring.

The cushion ring is a precision part, and any deformation, etc., can cause malfunction or poor performance.

Speed adjustment

⚠ Caution

- **1.** SMC's "throttle" type speed controllers (Series AS) are recommended for speed adjustment. (Refer to Table 3.)
- Speed adjustment is possible with meter-in/meter-out type speed controllers, but it may not be possible to obtain the cushion effect (smooth start-up, soft stop).
- 3. In case of other than horizontal mounting, it is recommended that the system have a reduced pressure supply circuit installed at its lower side. (This is also effective as a countermeasure against start-up delay on an upward stroke, and for air conservation.)

Table 3. Recommended speed controllers

Bore size	Model								
(mm)	Elbow type	Straight type	In-line type						
10	AS1201F-M5-04-X214	AS1301F-M5-04-X214	AS1001F-04-X214						
15	AS1201F-M5-04-X214	AS1301F-M5-04-X214	AS1001F-04-X214						
20	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214						
25	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214						
32	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214						
40	AS2201F-02-06-X214	AS2301F-02-06-X214	AS2001F-06-X214						
50	AS3201F-02-08-X214	AS3301F-02-08-X214	AS3001F-08-X214						
63	AS3201F-02-08-X214	AS3301F-02-08-X214	AS3001F-08-X214						

Adjustment of Cushion Effect (Smooth Start-up, Soft Stop)

⚠ Caution

The cushion cannot be adjusted.

There is no cushion needle adjustment of the kind found on conventional cushion mechanisms.

Series REA/REB Auto Switch Precautions 1

Be sure to read before handling.

Design and Selection

△Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of current load, voltage, temperature or impact.

2. Take precautions when multiple cylinders are used close together.

When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40mm. (When the allowable separation is indicated for each cylinder series, use the specified value.)

3. Pay attention to the length of time that a switch is ON at an intermediate stroke position

When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$V(mm/s) = \frac{Auto \text{ switch operating range (mm)}}{Load \text{ operating time (ms)}} \times 1000$$

In cases of high piston speed, the use of an auto switch (F7NT) with a built-in OFF delay timer (approx. 200ms) makes it possible to extend the load operating time.

4. Keep wiring as short as possible.

<Reed switch>

As the length of the wiring to a load gets longer, the in-rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

- 1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5m or longer.
- 2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30m long, it is not able to adequately absorb the in-rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please contact SMC in this case.

<Solid state switch>

3) Although wire length should not affect switch function, use a wire 100m or shorter.

5. Take precautions for the internal voltage drop of the switch.

<Reed switch>

- 1) Switches with an indicator light (Except A76H, A96 and Z76)
- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)

[The voltage drop will be "n" times larger when "n" auto switches are connected.]

Even though an auto switch operates normally, the load may not operate.

Marning

 In the same way, when operating below a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply voltage drop of switch Minimum operating voltage of load

 If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model A80, A80H, A90 and Z80).

<Solid state switch>

3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also, note that a 12VDC relay is not applicable.

6. Pay attention to leakage current.

<Solid state switch>

With a 2 wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3 wire switch if this specification will not be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

7. Do not use a load that generates surge voltage.

<Reed switch>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit.

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.

Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting and Adjustment

∆Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts (300m/s² or more for reed switches and 1000m/s² or more for solid state switches) while handling

Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

2. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

3. Mount switches using the proper tightening

When a switch is tightened beyond the range of tightening torque. the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of tightening torque may allow the switch to slip out of position. (Refer to switch mounting for each series regarding switch mounting, moving, and tightening torque, etc.)

4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON).

(The mounting position shown in a catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable

Wiring

△Warning

1. Avoid repeatedly bending or stretching lead

Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied.

<2 wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.

Wiring

△Warning

5. Do not allow short circuit of loads.

<Reed switch>

If the switch will be instantly damaged because of excess current flow into the switch.

Models D-F9, F-9W and all models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.

Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3 wire type switches.

6. Avoid incorrect wiring.

<Reed switch>

A 24VDC switch with indicator light has polarity. The brown [red] lead wire or terminal No. 1 is (+), and the blue [black] lead wire or terminal No. 2 is (-).

[In the case of model D-97, the side without indicator is (+), and the black line side is (-).]

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.

Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.

Applicable models: D-A73, A73H, A73C, Z73, D-A93

<Solid state switch>

- 1) If connections are reversed on a 2 wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
- 2) If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue [black] wire and the power supply line (-) is connected to the black [white] wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided. Special care should be taken regarding wire polarity during the

time that the old colors still coexist with the new colors.

	Old	New			
Output (+)	Red	Brown			
Output (–)	Black	Blue			

Solid state with diagnostic output

Old	New
Red	Brown
Black	Blue
White	Black
Yellow	Orange
	Red Black White

	3 WIFE							
		Old	New					
	Power supply	Red	Brown					
•	GND	Black	Blue					
	Output	\//bita	DII-					

Solid state with latch

	-	
	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black
Latch type diagnostic Output	Yellow	Orange

Note) Lead wire colors inside [] are those prior to conformity with IEC standards.

Operating Environment

⚠Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)

3. Do not use in an environment where the auto switch will be continually exposed to water.

Although switches satisfy the IEC standard IP67 construction (JIS C 0920: watertight construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.

4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.

5. Do not use in an environment with temperature cycles.

Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as they may be adversely affected.

6. Do not use in an environment where there is excessive impact shock.

<Reed switch>

When excessive impact (300m/s² or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.

7. Do not use in an area where surges are generated.

<Solid state switch>

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switch. Avoid sources of surge generation and crossed lines.

8. Avoid accumulation of iron waste or close contact with magnetic substances.

When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switches to malfunction due to a loss of the magnetic force inside the cylinder.

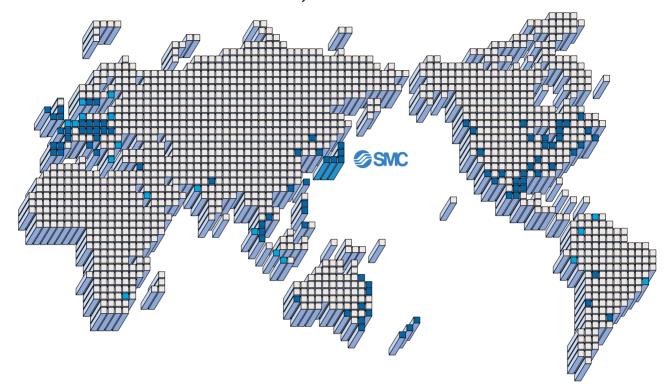
Maintenance

△Warning

- 1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
 - 1) Securely tighten switch mounting screws.
 - If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
 - 2) Confirm that there is no damage to lead wires.
 - To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
 - 3) Confirm the lighting of the green light on the 2 color indicator type switch.

Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other


△Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA

SMC Pneumatik GmbH

CZECH

SMC Czech s.r.o.

DENMARK

SMC Pneumatik A/S

FINLAND

SMC Pneumatiikka OY

FRANCE

SMC Pneumatique SA

GERMANY

SMC Pneumatik GmbH

HUNGARY

SMC Hungary Kft.

IRELAND

SMC Pneumatics (Ireland) Ltd.

ITALY

SMC Italia S.p.A.

NETHERLANDS

SMC Pnuematics BV.

NORWAY

SMC Pneumatics Norway A/S

POL AND

SMC Industrial Automation Polska Sp.z.o.o.

ROMANIA

SMC Romania s.r.l.

RUSSIA

SMC Pneumatik LLC.

SLOVAKIA

SMC Slovakia s.r.o.

EUROPE

SLOVENIA

SMC Slovenia d.o.o.

SPAIN/PORTUGAL

SMC España, S.A.

SWEDEN

SMC Pneumatics Sweden AB

SWITZERLAND

SMC Pneumatik AG.

UK

SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA

SMC (China) Co., Ltd.

HONG KONG

SMC Pneumatics (Hong Kong) Ltd.

INDIA

SMC Pneumatics (India) Pvt. Ltd.

SMC Pneumatics (S.E.A.) Sdn. Bhd.

PHILIPPINES

SMC Pneumatics (Philippines), Inc.

SINGAPORE

SMC Pneumatics (S.E.A.) Pte. Ltd.

SOUTH KOREA

SMC Pneumatics Korea Co., Ltd.

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.

THAILAND SMC Thailand Ltd. NORTH AMERICA

CANADA

SMC Pneumatics (Canada) Ltd.

MEXICO

SMC Corporation (Mexico) S.A. de C.V.

USA

SMC Corporation of America

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A.

BOLIVIA

SMC Pneumatics Bolivia S.R.L.

SMC Pneumaticos Do Brazil Ltda.

CHILE

SMC Pneumatics (Chile) S.A.

VENEZUELA

SMC Neumatica Venezuela S.A.

OCEANIA

AUSTRALIA

SMC Pneumatics (Australia) Pty. Ltd.

NEW ZEALAND

SMC Pneumatics (N.Z.) Ltd.

SMC CORPORATION

1-16-4 Shimbashi, Minato-ku, Tokyo 105-0004, JAPAN Tel: 03-3502-2740 Fax: 03-3508-2480 URL http://www.smcworld.com

© 2001 SMC CORPORATION All Rights Reserved

1st printing February, 2001

D-SMC.L.A. P-80 (JT)

All specifications in this catlog are subject to change