

Mechanically Jointed Rodless Cylinders

High functionality with reduced height and length

 Series
 B10
 B23
 B40
 B03

 MY3A
 110
 150
 240
 320

 MY3B
 122
 178
 276
 356

 MY1B
 160
 220
 340
 460

MY1M * At 100 mm stroke

MY1B

MY3M

0.73

0.45

0.91

4.41

3.65

7.00

14.5

9.99

18.9

1.57

1.32

2.12

The uniquely designed piston shape enables reduction of the height and length as well as practical arrangement of the common piping passages, cushion mechanism and positioning mechanism. This has achieved drastic miniaturisation and weight reduction.

Series MY3 Model Selection 1

The following are steps for selecting the MY3 series which is best suited to your application.

Guideline for a Tentative Model Selection

Cariaa	Turne		Guideline for a tenta	Nista		
Series	туре	Stroke accuracy	Use of external guide	al guide Direct loaded Table accurac		Nole
МҮЗА	Basic short type		0			Generally combined with a separare guide making it, by length, more compact.
МҮЗВ	Basic standard type	0	0	0		Generally combined with a separare guide, when stroke accuracy is required.
МҮЗМ	Slide bearing type	O	×	O	0	When mounting a work piece directly on the product, when stroke accuracy is

 \bigcirc Most suitable \bigcirc Suitable \triangle Usable \times Not recommended

Note) The table accuracy means the amount of table deflection when a moment is applied.

Selection Flow Chart

When an external guide is used, the selection confirmation of the guide capacity should follow the selection procedure of the external guide.

The MY3 series allows direct load application within the allowable range for the built-in guide. The payload in this case will vary depending on the driving speed and the mounting orientation of the cylinder. Please refer to the selection flow chart below and confirm the selection. (For a more detailed description of the selection flow, please refer to the instruction manual.)

SMC

Note 1) The shock absorber must meet the conditions mentioned on page 7.

Note 2) For the external shock absorber, a unit with appropriate capacity and features should be installed close to the load's centre of gravity.

Note 3) Use the stroke adjusting unit of the MY3B series with an external guide. Note 4) Shown below are the details of the maximum operating speed for the stroke adjusting unit.

MY3 Series, Maximum Operating Speed when Using the Stroke Adjusting Unit

Series	Bore size (mm)	Stroke adjustment range	Inside the fine stroke adjustment range	Outside the fine stroke adjustment range	
	10	L unit	800	500	
МҮЗВ	10	H unit	1000	800	
	25, 40, 63	L, H unit	1000	800	
MY3M	16, 25, 40, 63	L. H.unit	1500	800	

Outside the fine stroke adjustment range means that a holder mounting bracket (X416, X417) is used. Holder mounting bracket \rightarrow Refer to page 34, 35.

Unit: mm/s

Series MY3

Types of Moment Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load and position of the centre of gravity.

Mounting direction Horizontal

M_{1E}

M_{2E}

Мзе

Dynamic load FE

Dynamic

moment

Calculation of Guide Load Factor

1. Maximum load weight (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations. * To evaluate, use $\mathfrak{V}a$ (average speed) for (1) and (2), and \mathfrak{V} (impact speed \mathfrak{V} = 1.4 $\mathfrak{V}a$) for (3). Calculate m max for (2) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide	ΣQ -	Load weight [m]	Static moment [M]	Dynamic moment [ME]	< 1
load factors	20. –	Maximum load weight [m max]	Allowable static moment [Mmax]	Allowable dynamic moment = [MEmax]	È I

Note 1) Moment caused by the load, etc., with cylinder in resting condition. Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors (Σα) is the total of all such moments.

U : Impact speed (mm/s)

2. Reference formulas [Dynamic moment at impact]

- Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.
- m : Load weight (kg)
- F : Load (N)
- L1 : Distance to the load's centre of gravity (m) ME: Dynamic moment (N • m)
- FE : Load equivalent to impact (at impact with stopper) (N)

U = 1.4Ua (mm/s) FE = 1.4Ua x δ x m·g

 $\frac{1}{3} \cdot F_E \cdot L_1 = 4.57 \Im a \delta m L_1 (N \cdot m)$

- Ua: Average speed (mm/s)
- M : Static moment (N·m)

- δ : Bumper coefficient With rubber bumper = 4/100With air cushion = 1/100With shock absorber = 1/100
- g : Gravitational acceleration (9.8 m/s²)

υ

Ua: Average speed

1.4**∪a x δ x m**⊪ x g 1/₃ x F_E x Ζ

Dynamic moment M2E will not be generated.

¹/₃x F₌ x Y

: Bumper coefficient

Wall

Vertical

δ

Note) Regardless of the mounting orientation, dynamic moment is

calculated with the formulae above.

Ceiling

Note 4) 1.4 $\upsilon a\delta$ is a dimension less coefficient for calculating impact force.

Note 4)

Note 5) Average load coefficient = $\left(\frac{1}{3}\right)$: This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

3. For detailed selection procedure, please refer to pages 2, 3, 18, 19.

Front matter 3

. . Mе =

Series MY3 Model Selection 2

The following are steps for selecting the MY3 series which is best suited to your application.

Calculation of a Guide Load Factor

1 Operating Conditions

2 Load Blocking

Work Piece Weight and Centre of Gravity

m

Work piece	Woight	Centre of gravity					
no.	(m)	X-axis	Y-axis	Z-axis			
W	0.8 kg	5 mm	10 mm	20 mm			

3 Calculation of Load Factor for Static Load

m1: Mass

m1 max (from 1) of graph MY3A/m1) = 10.7 (kg) Load factor $\alpha_1 = m_1/m_1 max = 0.8/10.7 = 0.08$

M1: Moment

M1 max (from 2) of graph MY3A/M1) = 4 (N·m) M1 = m1 x g x X = 0.8 x 9.8 x 5 x 10⁻³ = 0.04 (N·m) Load factor $\alpha_2 = M1/M1$ max = 0.04/4 = **0.01**

M2: Moment

M2 max (from ③ of graph MY3A/M2) = 0.8 (N·m) M3 = M1 x g x Y = 0.8 x 9.8 x 10 x 10⁻³ = 0.08 (N·m) Load factor $\alpha_3 = M_2/M_2$ max = 0.08/0.8 = 0.1 M2

Series MY3

Calculation of Guide Load Factor

5 Sum and Examination of Guide Load Factors -

 $\Sigma\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.08 + 0.01 + 0.1 + 0.31 + 0.43 = 0.93 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

Load Weight

Allowable Moment

Basic standard type (Air cushion) ø16, ø25, ø40, ø63

Series MY3A/3B Model Selection

The following are steps for selecting the MY3A/3B series which is best suited to your application.

Calculation of Guide Load Factor

1 Operating Conditions

2 Load Blocking

Work Piece Weight and Centre of Gravity

m

Work piece no.	Mass	Centre of gravity					
	(m)	X-axis	Y-axis	Z-axis			
W	0.8 kg	5 mm	10 mm	20 mm			

3 Calculation of Load Factor for Static Load

m1: Mass

m1 max (from 1) of graph MY3A/m1) = 10.7 (kg) Load factor $\alpha_1 = m_1/m_1 max = 0.8/10.7 = 0.08$

M1: Moment

M1 max (from 2) of graph MY3A/M1) = 4 (N•m) M1 = m1 x g x X = 0.8 x 9.8 × 5 x 10⁻³ = 0.04 (N•m) Load factor $\alpha_2 = M1/M1$ max = 0.04/4 = **0.01**

M2: Moment

M2 max (from ③ of graph MY3A/M2) = 0.8 (N•m) M3 = M1 x g x Y = 0.8 x 9.8 x 10 x 10⁻³ = 0.08 (N•m) Load factor $\alpha_3 = M_2/M_2$ max = 0.08/0.8 = 0.1 M2

Model Selection Series MY3A/3B

Calculation of Guide Load Factor

5 Sum and Examination of Guide Load Factors -

 $\Sigma\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.08 + 0.01 + 0.1 + 0.31 + 0.43 = 0.93 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

Load Weight

Allowable Moment

Series MY3A/3B

Maximum Allowable Moment / Maximum Allowable Load

Cariaa	Bore size	Maximum a	allowable mo	ment (N•m)	Maximum allowable load (kg)			
Series	(mm)	M 1	Imallowable moment (N•m) Maximum allowable load (R M2 M3 m1 m2 mm 0.3 0.7 6 3 1 1.2 2 16 6 4 4.8 10 40 12 10	m3				
	16	1.8	0.3	0.7	6	3	1.5	
МҮЗА	25	6	1.2	2	16	6	4	
MY3B	40	24	4.8	10	40	12	10	
	63	70	19	30	80	24	20	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Maximum Allowable Load

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

Cushion Capacity

Absorption Capacity of Rubber Bumper (MY3A)

Rubber Bumper Displacement (Additional Stroke due to Operating Pressure on Each Side)

The stop position of the built-in rubber bumper of the MY3A series varies depending on the operating pressure. For alignment at the stroke end, follow the guideline bellow for the stroke end position during operation. First. find the incremental displacement at the operating pressure in the graph and then add it to the stroke end position at no pressurisation. If positioning accuracy is required for the stop position at the stroke end, consider installing an external positioning mechanism or switching to the air cushion type (MY3B).

Note) In vertical operation, find the guideline for the stroke end position by adding, in case of the lower end, or subtracting, in case of the upper end, the pressure displacement equivalent to the self weight of the load. **SMC**

Series MY3A/3B

Cushion Capacity

Absorption Capacity of Air Cushion and Stroke Adjusting Unit (MY3B)

Unit[,] mm

Bore size (mm)	Cushion stroke
16	13
25	18
40	25
63	30

Stroke Adjusting Unit Fine Stroke Adjustment Range Unit: mm

0 to -10		
0 to -12		
0 to -16		
0 to -24		

Note) The maximum operating speed will differ when the stroke adjusting unit is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end), such as at a fixed intermediate position (X416, X417).

2000 Maximum collision speed (H, L) with fixed intermediate position 1000 H 4, unit 500 400 300 200 100 80 3 5 10 20 50 m₃max m2maxm1max-Load weight (kg)

Horizontal collision: P = 0.5 MPa

Calculation of Absorbed Energy for Stroke Adjusting Unit with Built-in Shock Absorber

Symbols

- $\dot{\upsilon}$: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F: Cylinder thrust (N) g :
- Gravitational acceleration (9.8 m/s²) Shock absorber stroke (m) s :
- Note) The speed of the impacting object is measured at the time of collision with the shock absorber.
- Note) With an operating pressure of 0.6 MPa or larger, the use of a cushion or an external shock absorber conforming to the conditions on page 7 is recommended.

External Shock Absorber Selection

When positioning of the stop position is necessary or the absorption capacity of the built-in cushion is not sufficient, refer to the selection procedure below and consider the installation of an external shock absorber.

Selection Items to confirm for Use with an External Shock Absorber

m₃max

Weight (kg)

Note) The weight represents the equivalent weight including the thrust energy.

(2) When an external guide is used.

Piston Speed for Use with an External Shock Absorber

Bore size (mm)	16	16 25 40 63							
МҮЗА		80 to 1500 mm/o							
МҮЗВ	80 to 1500 mm/s								

An external shock absorber can be used within the above piston speed range. However, in conjunction with the absortion capacity selection, also confirm the conditions to ensure that the shock absorber collision impact force to stays within the allowable range in the graph.

Use of an external shock absorber with conditions exceeding the allowable range may damage the cylinder.

To confirm the collision impact force of the shock absorber, first find the impact force or acceleration under the operating conditions using the selection information or selection software provided by the manufacturer and then, refer to the graph.

(The selection should allow sufficient margin because the value calculated by the selection software involves an error with reference to the actual value.)

Example of Recommended Use of the **External Shock Absorber**

MY3□16 ==> RB-OEM0.25M
MY3□25 =⇒ RB-OEM0.5M
MY3□40 ⇒ RB-OEM1.0MF
MY3□63 ⇒ RB-OEM1.5M x 1

Lm₁max

Mechanically Jointed Rodless Cylinder Series MY3A/3B Basic Type: Ø16, Ø25, Ø40, Ø63

How to Order

Left Port Stroke adjusting unit HL Installation example

Port

Applicable Auto Switches/Refer to pages 29 to 33 for further information on auto switches.

e	Special	Electrical	tor	Wiring	Lo	ad volt	age	Auto switc	n model	Lead wir	e length	n (m)*	Pro wirod	d Applicable											
d X	function	entry	ight	(Output)				Electrica	lentry	0.5	3	5	connector		ad										
- I	Turiotion	Chury	<u> </u>	(Output)		3	AC	Perpendicular	In-line	(-)	(L)	(Z)	CONTRECTO	10	uu										
_			Voc	3-wire (NPN equiv.)	_	5 V	_	A96V	A96	•	•	_	_	IC circuit	_										
vitch	_	Grommet	165	(12 V	100 V	A93V	A93	•		—	—	_	Relav.										
щS	-	-											2-wire 24 V 5 V, 10 12 V or	100 V or less	A90V	A90	•	•	_		IC circuit	PLC			
Ę				3-wire (NPN)		5 V 12V	M9NV	M9N			0	0	IC												
witc	—			3-wire (PNP)				M9PV	M9P			0	0	circuit											
fes		Crommet	Vaa	2-wire	12 V									1	[12 V	12 V	M9BV	M9B	•		0	0	Ι	Relay,
stat	Diagnostic	Grommet	res	3-wire (NPN)	24 V	5 V	—	F9NWV	F9NW	•		0	0	IC	PLC										
bild	indication (2-colour \			3-wire (PNP)		12 V		F9PWV	F9PW			0	0	circuit											
Ň	(indication)				2-wire		12 V		F9BWV	F9BW			0	0	_										
* 02	d wiro lor	ath symbols	· 05	m - (F	vamnle		Noto	* Solid state swit	ahaa markad w	ith a "O" ever	hol aro	produc	od upon	rocoint	ofordor										

* Lead wire length symbols: 0.5 m - (Example) M9N 3 m L M9NL 5 m Z M9NZ te) * Solid state switches marked with a "O" symbol are produced upon receipt of order.
 * In addition to the models in the above table, there are some other auto switches that are applicable. For more information, please refer to page 28.

Mechanically Jointed Rodless Cylinder Series MY3A/3B

Specifications

Bore size (mm)	16	25	40	63			
Fluid	Air						
Action	Double acting						
Operating pressure range	0.15 to 0.8 MPa						
Proof pressure	1.2 MPa						
Ambient and fluid temperature		5 to (60°C				
Cushion	Rubber	bumper (MY3A	A) / Air cushion	(MY3B)			
Lubrication	Non-lube						
Stroke length tolerance	1000 mm or less ^{+1.8} , From 1001 mm ^{+2.8} Note)						
Port size (Rc, NPT, G)	M5	1/8	1/4	3/8			

Note) The tolerance of the MY3A is a value with no pressurisation. When a rubber bumper is used, the stroke of the MY3A varies according to the operating pressure. To find the stroke length tolerance at a particular operating pressure, double the additional stroke due to operating pressure on each side (page 5) and add it.

Stroke Adjusting Unit Specifications

Bore size (mm)	16		25		40		63	
Unit symbol	L	н	L	н	L	Н	L	Н
Shock absorber model	RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725
Fine stroke adjustment range (mm) MY3B	0 to	-10	0 to	-12	0 to	-16	0 to	-24

Piston Speed

Bore size (mm)	16	25	40	63
Without stroke adjusting unit (MY3A)		80 to 50	0 mm/s	
Without stroke adjusting unit (MY3B)	80 to 1000 mm/s			
Stroke adjusting unit (L and H unit/MY3B)	80 to 1000 mm/s (ø16 L unit: 80 to 800 mm/s)			
* External shock absorber (low reaction type)		80 to 15	500 mm/	s

* Refer to "External Shock Absorber Selection" on page 7.

When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjusting unit.

Standard Stroke

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
16, 25 40, 63	100, 200, 300, 400, 500, 600 700, 800, 900, 1000, 1200 1400, 1600, 1800, 2000	3000

* Strokes are manufacturable in 1 mm increments, up to the maximum stroke. However, when exceeding 2000 mm stroke, add "-XB11" to the end of the model number. Refer to "Made to Order" on page 34.

Theo	Theoretical Output Unit: N										
Bore	Piston		Operating pressure (MPa)								
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
16	200	40	60	80	100	120	140	160			
25	490	98	147	196	245	294	343	392			
40	1256	251	377	502	628	754	879	1005			
63	3115	623	934	1246	1557	1869	2180	2492			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Option

Stroke Adjusting Unit Model

Model	Unit Bore size		Unit Bore siz		16	25	40	63
	Lunit	Left	MY3B-A16L1	MY3B-A25L1	MY3B-A40L1	MY3B-A63L1		
MV2D	Lunit	Right	MY3B-A16L2	MY3B-A25L2	MY3B-A40L2	MY3B-A63L2		
MY3B	Ll unit	Left	MY3B-A16H1	MY3B-A25H1	MY3B-A40H1	MY3B-A63H1		
	H UNIL	Right	MY3B-A16H2	MY3B-A25H2	MY3B-A40H2	MY3B-A63H2		

Shock Absorber Specifications

M	lodel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725		
Max. energy	absorption (J)	0.84	2.4	10.1	29.8	46.6		
Stroke abs	orption (mm)	6	7	12	15	25		
Max. collisio	on speed (mm/s)	1000						
Max. operating frequency (cycle/min)		80	70	45	25	10		
Spring	Extended	1.96	4.22	6.86	8.34	8.83		
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01		
Operating range (°C	temperature			5 to 60				

Weight Unit: kg Stroke adjusting unit weight Additional (per unit) Bore size Basic weight Model (mm) weight per 50 mm H unit L unit stroke weight weight 16 0.22 0.06 25 0.65 0.17 МҮЗА 2.45 40 0.25 63 7.14 0.56 16 0.23 0.06 0.04 0.05 25 0.75 0.17 0.10 0.15 MY3B 0.26 40 2.58 0.25 0.30 63 0.56 0.57 0.92 7.87

Calculation method/Example: **MY3B25-300L** Basic weight 0.75 kg Cylinder st

L unit weight 0.1 kg

Made to Order

Refer to pages 34 to 35 regarding "Made to Order" for the MY3A/B series.

Series MY3A/3B

Construction

МҮЗА

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Aluminum alloy	Chromated
6	Wear ring	Special resin	
7	Belt separator	Special resin	
8	Belt clamp	Special resin	
11	Stopper	Carbon steel	Nickel plated

Component Parts

No.	Description	Material	Note
12	Spring pin	Carbon tool steel	
13	Seal ring	Brass	
14	Bearing	Special resin	
17	Inner wiper	Special resin	
19	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
20	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
21	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
22	Hexagon socket head plug	Carbon steel	Nickel plated
24	Magnet	Rare earth magnet	
25	Seal magnet	Rubber magnet	

Seal List

No.	Description	Material	Qty.	MY3A16	MY3A25	MY3A40	MY3A63
9	Seal belt	Special resin	1	MY3A16-16A-Stroke	MY3A25-16A-Stroke	MY3A40-16A-Stroke	MY3A63-16A-Stroke
10	Dust seal band	Stainless steel	1	MY3A16-16B-Stroke	MY3A25-16B-Stroke	MY3A40-16B-Stroke	MY3A63-16B-Stroke
15	Gasket bumper	NBR	2	RMA-16	RMA-25	RMA-40	RMA-63
16	Piston seal	NBR	2	RMY-16	RMY-25	RMY-40	RMY-63
18	Scraper	Special resin	1	MYA16-15-R6656	MYA25-15-R6657	MYA40-15-R6658	MYA63-15-R6659
23	O-ring	NBR	4	ø6.2 x ø3 x ø1.6	C-5	ø10.5 x ø8.5 x ø1	C-14

Mechanically Jointed Rodless Cylinder Series MY3A/3B

Construction

MY3B

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Aluminum alloy	Chromated
6	Wear ring	Special resin	
7	Belt separator	Special resin	
8	Belt clamp	Special resin	
11	Stopper	Carbon steel	Nickel plated
12	Spring pin	Carbon tool steel	

Component Parts

Description	Material	Note					
Cushion boss	Aluminum alloy	Chromated					
Bearing	Special resin						
Inner wiper	Special resin						
Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated					
Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated					
Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated					
Hexagon socket head plug	Carbon steel	Nickel plated					
Magnet	Rare earth magnet						
Seal magnet	Rubber magnet						
Cushion ring	Brass						
Cushion needle	Rolled steel	Nickel plated					
	Description Cushion boss Bearing Inner wiper Hexagon socket head cap screw Hexagon socket head cap screw Hexagon socket head set screw Hexagon socket head plug Magnet Seal magnet Cushion ring Cushion needle	Description Material Cushion boss Aluminum alloy Bearing Special resin Inner wiper Special resin Hexagon socket head cap screw Chrome molybdenum steel Hexagon socket head cap screw Chrome molybdenum steel Hexagon socket head set screw Chrome molybdenum steel Hexagon socket head set screw Chrome molybdenum steel Hexagon socket head plug Carbon steel Magnet Rare earth magnet Seal magnet Rubber magnet Cushion ring Brass Cushion needle Rolled steel					

Seal List

No.	Description	Material	Qty.	MY3B16	MY3B25	MY3B40	MY3B63
9	Seal belt	Special resin	1	MY3B16-16A-Stroke	MY3B25-16A-Stroke	MY3B40-16A-Stroke	MY3B63-16A-Stroke
10	Dust seal band	Stainless steel	1	MY3B16-16B-Stroke	MY3B25-16B-Stroke	MY3B40-16B-Stroke	MY3B63-16B-Stroke
15	Tube gasket	NBR	2	RMB-16	RMB-25	RMB-40	RMB-63
16	Piston seal	NBR	2	RMY-16	RMY-25	RMY-40	RMY-63
18	Scraper	Special resin	1	MYA16-15-R6656	MYA25-15-R6657	MYA40-15-R6658	MYA63-15-R6659
23	O-ring	NBR	4	ø6.2×ø3×ø1.6	C-5	ø10.5×ø8.5×ø1	C-14
28	O-ring	NBR	2	ø4×ø1.8×ø1.1	ø4×ø1.8×ø1.1	ø7.15×ø3.75×ø1.7	$\emptyset 8.3 imes \emptyset 4.5 imes \emptyset 1.9$
29	Cushion seal	NBR	2	MCS-3	MCS-5	RCS-8	RCS-12

Series MY3A/3B

Short Type: Ø16, Ø25, Ø40, Ø63

MY3A Bore size - Stroke

																		(mm
Model	Α	В	С	E	G	н	HG	J	IJ	КК	L	LD	LL	LW	м	М	М	N
MY3A16	55	6	18	2	9.5	27	5	Ν	14	5	65	3.5	22.5	41	6	Μ	14	13.5
MY3A25	75	9.5	25	2	14	37	7.4	Ν	15	7.5	95	5.5	27.5	61	8	M	15	20
MY3A40	120	14	38	2	18	54	12	Ν	16	12	160	8.6	40	90	12	M	16	27
MY3A63	160	17	60	3	20.5	84	16.5	N	18	22	220	11	50	134	16	M	18	31
	-						-					-						
Model	NE	NG	NH	NW		Ρ	PA	PB	PC	PD	PG	Q	QW	Т	TT	UU	YW	Z
MY3A16	22.5	8	17.2	43	N	15	44	26	32.5	4	4	102	19	7	6.5	30	42	110
MY3A25	32	10	24	65	Rc, NP	T, G1/8	64	40	47.5	6	6	138	30	10	9	47	62	150
MY3A40	46	15	37	94	Rc, NP	T, G1/4	112	60	80	7.5	8.5	223	40	14	14	66	92	240
MY3A63	70	29	58	139	Rc, NP	T, G3/8	162	84	110	10	10	300	64	16	20	99	136	320

Standard Type: Ø16, Ø25, Ø40, Ø63

MY3B Bore size - Stroke

																		(r	nm)
Model	Α	В	C	E	E G	Н	HG	,	IJ	KK	L	LD	L	- L	.W	M	MM		N
MY3B16	61	6	18	3 2	2 9.5	27	5	N	Л4	5	65	3.5	5 28	.5	41	6	M4	1	3.5
MY3B25	89	9.5	25	5 2	2 14	37	7.4	L N	И5	7.5	95	5.5	5 41	.5	61	8	M5	2	0
MY3B40	138	14	38	3 2	2 18	54	12	N	/ 6	12	160	8.6	58		90	12	M6	2	7
MY3B63	178	17	60) 3	3 20.5	84	16.5	5 1	/ 8	22	220	11	68	1	34	16	M8	3	1
Model	NE	NG	NH	NW	Р	PA	PB	PC	PD	PE	PF	PG	Q	QW	T	TT	UU	YW	Z
MY3B16	22.5	8	17.2	43	M5	44	26	32.5	4	9.7	8.5	4	114	19	7	6.5	30	42	122
MY3B25	32	10	24	65	Rc, NPT, G1/8	64	40	47.5	6	14.5	12.2	6	166	30	10	9	47	62	178
MY3B40	46	15	37	94	Rc, NPT, G1/4	112	60	80	7.5	19.5	16.5	8.5	259	40	14	14	66	92	276
MY3B63	70	29	58	139	Rc, NPT, G3/8	162	84	110	10	23.5	27.5	10	336	64	16	20	99	136	356

Series MY3A/3B

Standard Type: Ø16, Ø25, Ø40, Ø63

Stroke adjusting unit

Shock absorber for low load + Adjusting bolt

MY3B Bore size Stroke L

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3B16	14.1	21.5	26.5	34.5	2.4	40.8	25.8	6	0.9	25	62	RB0806
MY3B25	20.1	29.8	36.5	51.5	3.6	46.7	25.2	7	1.4	28.5	90	RB1007
MY3B40	30.1	45	53.5	72.5	5	67.3	36.3	12	0.9	39	128	RB1412
MY3B63	36.1	70.5	83.5	108	6	73.2	36.2	15	0.9	43	178	RB2015

Note) When the stroke adjusting unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited.

Shock absorber for high load + Adjusting bolt MY3B Bore size Stroke H

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3B16	14.1	23	29.5	34.5	2.4	46.7	31.7	7	0.9	25	62	RB1007
MY3B25	20.1	31.8	41	52.2	3.6	67.3	45.8	12	1.4	28.5	90	RB1412
MY3B40	30.1	48	60.5	73.5	5	73.2	42.2	15	0.9	39	128	RB2015
MY3B63	36.1	74.5	91	108	6	99	62	25	0.9	43	178	RB2725

Note) When the stroke adjusting unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited.

Side Support

A B шţ

С

D

(mm)

										(mm)
Model	Applicable cylinder	Α	В	С	D	Е	F	G	Н	J
MY-S16 ^A B	MY3A16/MY3B16	53	63.6	15	26	4.9	3	6.5	3.4	M4
MY-S25 ^A B	MY3A25/MY3B25	77	91	35	50	8	5	9.5	5.5	M6
MY-S32 ^A B	MY3A40/MY3B40	112	130	45	64	11.7	6	11	6.6	M8
MY-S40 ^A _B	MY3A63/MY3B63	160	182	55	80	14.8	8.5	14	9	M10

Guide for Using Side Support

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right. m

A Caution

- 1) If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2 Support brackets are not for mounting; use them solely for providing support.

Guide for Using MY3B Side Support

Series MY3A/3B

Floating Bracket

Facilitates connection to other guide systems.

Application

MY3 Floating Bracket Mounting Dimensions

Mounting direction 2 (to minimise the installation width)

Work piece

Application

	loating B	sracket M	ounting D	imension	S				(mm)
Madal	Applicable				Com	imon		Adjustin	ig range
woder	cylinder	G	Н	JJ	L	Р	LD	Ea	Еь
MYAJ16	MY3[]16	38	20	M4	4.5	10	6	1	1
MYAJ25	MY3[25	55	22	M6	5.5	12	9.5	1	1
MYAJ40	MY3[]40	72	32	M8	6.5	16	11	1	1
MYAJ63	MY3[63	100	40	M10	9	19	14	1	1
Model	Applicable		1	Moun	ting direction	0	I	1	
model	cylinder	A 1	B 1	C 1	D1	F 1	K 1	Q 1	
MYAJ16	MY3[]16	29	68	34	18	88	5.5	10	
MYAJ25	MY3[25	38.5	90	45	24	112	6.5	11	
MYAJ40	MY3□40	56	130	65	32	162	9.5	16	
MYAJ63	MY3[63	86	186	93	50	226	10	20	
				••			-		
Model	Applicable		_	Moun	ting direction	2		-	
model	cylinder	A2	B2	C2	D2	F2	K2	Q 2	
MYAJ16	MY3[]16	36	58	29	30	68	10	5	
MYAJ25	MY3225	46	80	40	40	92	14	6	
MYAJ40	MY3 40	68	114	57	55	130	19	8	
MYAJ63	MY3063	100	166	83	80	185	23	9.5	

Holding bolt

Installation of Holding Bolts

Tightening Torque for Holding Bolts

			Unit: N ⋅ m
Model	Tightening torque	Model	Tightening torque
MYAJ16	1.5	MYAJ40	5
MYAJ25	3	MYAJ63	13

Series MY3M Model Selection

The following are steps for selecting the MY3M series which is best suited to your application.

Calculation of Guide Load Factor

1 Operating Conditions

2 Load Blocking

Work Piece Weight and Centre of Gravity

m

Work piece	Mass	С	entre of gravi	ty
no.	(m)	X-axis	Y-axis	Z-axis
W	3.0 kg	5 mm	10 mm	20 mm

3 Calculation of Load Factor for Static Load

m1: Mass

m1 max (from (1) of graph MY3M/m1) = 19.0 (kg) Load factor $\alpha_1 = m_1/m_1 max = 3.0/19.0 = 0.16$

M1: Moment

M1 max (from 2) of graph MY3M/M1) = 8 (N·m) M1 = m1 x g x X = 3.0 x 9.8 x 5 x $10^{-3} = 0.15$ (N·m) Load factor $\alpha_2 = M1/M1$ max = 0.15/8 = 0.02

M2: Moment

M2 max (from ③ of graph MY3M/M2) = 4.5 (N·m) M3 = M1 x g x Y = 3.0 x 9.8 x 10 x 10⁻³ = 0.29 (N·m) Load factor $\alpha_3 = M_2/M_2 \max = 0.29/4.5 = 0.07$ M2

5 Sum and Examination of Guide Load Factors -

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

Allowable Moment

Series MY3M

Maximum Allowable Moment / Maximum Allowable Load

Model	Bore size	Maximum a	llowable mo	ment (N•m)	Maximum allowable load (kg)					
Iviodei	(mm)	M1	M2	Мз	m 1	m2	mз			
	16	5	3	1.4	18	14	3			
MAYOM	25	16	9	4	38	36	8			
	40	60	24	20	84	81	20			
	63	140	60	54	180	163	40			

* We recommend that the static M2 moment direction should be as illustrated.

Also, when using the product in a wall mount application (m₃ applied), we recommend that the mounting orientation of the adjustment side (hexagon socket head button bolt side) should be in the upper position.

Maximum Allowable Moment

Recommended direction of applying M₂ moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Maximum Allowable Load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

SMC

axiniuni Anv ∕зм M₁

Cushion Capacity

MY3M16 Horizontal collision: P = 0.5 MPa i i 2000 Maximum collision speed with fixed intermediate position 1500 1000 Collision speed (mm/s) cushion, 500 Uni 400 300 200 100 80 20 0.4 0.5 1 2 3 4 5 10 m2maxm₃max m1max-Load weight (kg)

Air Cushion Stroke

Air Cushion S	stroke	Unit: mm
Bore size (mm)	Cushion stroke	
16	13	
25	18	
40	25	
63	30	

Stroke Adjusting Unit Fine Stroke Adjustment Range Unit: mm

	, 0
Bore size (mm)	Fine stroke adjustment range (mm)
16	0 to -10
25	0 to -12
40	0 to -16
63	0 to -24

Note) The maximum operating speed will differ when the stroke adjusting unit is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end), such as at a fixed intermediate position (X416, X417). (Refer to the graph above.)

MY3M63

Vertical Vertical Horizontal (downward) (upward) m Type of collision s Kinetic -m•ϑ² energy Er 2 Thrust F•s F•s + m•g•s F•s - m•g•s energy E2 Absorbed E1 + E2 energy E

- Symbols
- U: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F٠ Cylinder thrust (N)
- Gravitational acceleration (9.8m/s²) g : Gravitational acceleration (s : Shock absorber stroke (m)
- Note) The speed of the impacting object is measured at the time of collision with the shock absorber

Mechanically Jointed Rodless Cylinder Series MY3M Slide Bearing Type: Ø16, Ø25, Ø40, Ø63

How to Order

Applicable Auto Switches/Refer to pages 29 to 33 for further information on auto switches.

	0		or			ad volt	200	Auto switch	n model	Lead wir	e length	ı (m)*			
Å Å	Special	Electrical	icat	(Output)			age	Electrical	entry	0.5	3	5	Pre-wired	Аррі	ad
ΕĒ.	Tunction	entry	lnd li	(Output)	DC		AC	Perpendicular	In-line	(-)	(L)	(Z)	connector	10	au
_			Vos	3-wire (NPN equiv.)	_	5 V —		A96V	A96	•	•		—	IC circuit	_
teed vitch	_	Grommet	165	()		12 V	100 V	A93V	A93	•	•	—	—	_	Relav.
щŝ			_	2-wire	24 V	5 V, 12 V	100 V or less	A90V	A90	•	•	_	—	IC circuit	PLC
Ë				3-wire (NPN)		5 V		M9NV	M9N	٠		0	0	IC	
wito	—			3-wire (PNP)		12V		M9PV	M9P	٠		0	0	circuit	
ŝ		Crommet	Vaa	2-wire		12 V		M9BV	M9B	۲	•	0	0	—	Relay,
stat	Diagnostic	Grommet	res	3-wire (NPN)	24 V	5 V		F9NWV	F9NW	•	•	0	0	IC	PLC
blid	indication			3-wire (PNP)		12 V		F9PWV	F9PW	٠	•	0	0	circuit	
Ň	(indication)			2-wire		12 V		F9BWV	F9BW	٠	•	0	0	_	
* Lea	d wire len	gth symbols	s: 0.5	m (E	xample) M9N	Note	e) * Solid state swi	tches marked v	vith a "O" syi	mbol are	e produ	ced upor	n receipt	of order

3 m.......... L M9NL 5 m.......... Z M9NZ * Solid state switches marked with a "O" symbol are produced upon receipt of order.
 * In addition to the models in the above table, there are some other auto switches that are applicable. For more information, please refer to page 28.

Symbol					
_					
Ļ					

Bore size (mm)	16	25	40	63	
Fluid		А	ir		
Action		Double	acting		
Operating pressure range		0.15 to (0.7 MPa		
Proof pressure	1.05 MPa				
Ambient and fluid temperature		5 to (60°C		
Cushion		Air cu	shion		
Lubrication	Non-lube				
Stroke length tolerance	1000 mm or less $^{+1.8}_{0}$, From 1001 mm $^{+2.8}_{0}$				
Port size (Rc, NPT, G)	M5	1/8	1/4	3/8	

Stroke Adjusting Unit Specifications

Bore size (mm)	16		25		40		63	
Unit symbol	L	Н	L	н	L	н	L	н
Shock absorber model	RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725
Fine stroke adjustment range (mm)	0 to	-10	0 to	-12	0 to	-16	0 to	-24

Specifications

Piston Speed

Bore size (mm)	16	25	40	63
Without stroke adjusting unit	80 to 1000 mm/s			
Stroke adjusting unit (L and H unit)	80 to 1500 mm/s			
* External shock absorber		80 to 15	00 mm/s	

 \ast When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjusting unit.

Standard Stroke

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
16, 25 40, 63	100, 200, 300, 400, 500, 600 700, 800, 900, 1000, 1200 1400, 1600, 1800, 2000	3000

* Strokes are manufacturable in 1 mm increments, up to the maximum stroke. However, when exceeding 2000 mm stroke, add "-XB11" to the end of the model number. Refer to "Made to Order" on page 34.

Theor	Theoretical Output Unit: N										
Bore	Piston		Operating pressure (MPa)								
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
16	200	40	60	80	100	120	140	160			
25	490	98	147	196	245	294	343	392			
40	1256	251	377	502	628	754	879	1005			
63	3115	623	934	1246	1557	1869	2180	2492			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Option

Stroke Adjusting Unit Model

Model	Unit Bo	ore size (mm)	16	25	40	63
	1	Left	MY3M-A16L1	MY3M-A25L1	MY3M-A40L1	MY3M-A63L1
MV2M		Right	MY3M-A16L2	MY3M-A25L2	MY3M-A40L2	MY3M-A63L2
	Ll unit	Left	MY3M-A16H1	MY3M-A25H1	MY3M-A40H1	MY3M-A63H1
	H UNIL	Right	MY3M-A16H2	MY3M-A25H2	MY3M-A40H2	MY3M-A63H2

Shock Absorber Specifications

		_					
Model		RB 0806	RB 1007	RB 1412	RB 2015	RB 2725	
Max. energy absorption (J)		2.9	5.9	19.6	58.8	147	
Stroke ab:	sorption (mm)	6	7	12	15	25	
Max. collisi	on speed (mm/s)	1500					
Max. operating frequency (cycle/min)		80	70	45	25	10	
Spring	Extended	1.96	4.22	6.86	8.34	8.83	
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01	
Operating temperature range (°C)		5 to 60					

Weight

Model	Bore size (mm)	Basic	Additional weight per 50 mm stroke	Stroke adjusting unit weight (per unit)				
		weight		L unit weight	H unit weight			
	16	0.29	0.08	0.05	0.06			
MYOM	25	0.90	0.21	0.12	0.17			
IVITSIVI	40	3.03	0.31	0.34	0.43			
	63	8.63	0.68	0.69	0.91			
Calculation	Calculation method/Example: MY3M25-400H							

ple: MY Basic weight 0.90 kg Cylinder stroke 400 st

Additional weight 0.21/50 st $0.90 + 0.21 \times 400 \div 50 + 0.17 \times 2 \approx 2.92 \text{ kg}$ L unit weight 0.17 kg

Refer to pages 34 to 35 regarding "Made to Order" for the MY3M series.

Unit: ka

Series MY3M

Construction

МҮЗМ

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Hard anodized
4	Piston yoke	Stainless steel	
5	Piston	Aluminum alloy	Chromated
6	Wear ring	Special resin	
7	Belt separator Special resin		
8	Belt clamp	Special resin	
11	Stopper	Carbon steel	Nickel plated
12	Spring pin	Carbon tool steel	
13	Cushion boss	Aluminum alloy	Chromated
14	Bearing	Special resin	
17	Inner wiper	Special resin	
18	End cover	Special resin	
19	Adjust arm A	Aluminum alloy	Chromated
20	Adjust arm B	Aluminum alloy	Chromated

Component Parts

No.	Description	Material	Note
21	Backup spring	Stainless steel	
22	Bearing adjusting rubber	NBR	
23	Coupler body	Aluminum alloy	Hard anodized
24	Coupler pin	Carbon steel	Electroless nickel plated
25	Spacer	Stainless steel	
26	Magnet	Rare earth magnet	
27	Seal magnet	Rubber magnet	
29	Cushion ring	Brass	
30	Cushion needle	Rolled steel	Nickel plated
33	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
34	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
35	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
36	Hexagon socket button head screw	Chrome molybdenum steel	Nickel plated
37	Hexagon socket button head screw	Chrome molybdenum steel	Nickel plated
38	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
39	Hexagon socket head plug	Carbon steel	Nickel plated

Seal List

No.	Description	Material	Qty.	MY3M16	MY3M25	MY3M40	MY3M63			
9	Seal belt	Special resin	1	MY3B16-16A-Stroke	MY3B25-16A-Stroke	MY3B40-16A-Stroke	MY3B63-16A-Stroke			
10	Dust seal band	Stainless steel	1	MY3B16-16B-Stroke	MY3B25-16B-Stroke	MY3B40-16B-Stroke	MY3B63-16B-Stroke			
15	Tubing gasket	NBR	2	RMB-16	RMB-25	RMB-40	RMB-63			
16	Piston seal	NBR	2	RMY-16	RMY-25	RMY-40	RMY-63			
28	O-ring	NBR	4	ø6.2 x ø3 x ø1.6	C-5	ø10.5 x ø8.5 x ø1	C-14			
31	O-ring	NBR	2	ø4 x ø1.8 x ø1.1	ø4 x ø1.8 x ø1.1	ø7.15 x ø3.75 x ø1.7	ø8.3 x ø4.5 x ø1.9			
32	Cushion seal	NBR	2	MCS-3	MCS-5	RCS-8	RCS-12			

Slide Bearing Type: Ø16, Ø25, Ø40, Ø63

MY3M Bore size - Stroke

																(mm)
Model	Α	В	С	G	Н	HG	L	LD	LH	LL	LW	М	ММ	N	NE	NG
MY3M16	61	6	18	9.5	33	5	65	3.5	20.5	28.5	64	6	M4	13.5	22.5	8
MY3M25	89	9.5	25	14	45	7.4	95	5.5	27	41.5	87	10	M5	20	32	10
MY3M40	138	14	38	18	63	12	160	8.6	35	58	124	13	M6	27	46	15
MY3M63	178	17	60	20.5	93	16.5	220	11	46	68	176	15	M10	31	70	29
Model	NH	NT	NW	F	2	PA	PB	PE	PF	PG	Q	QW	TT	UU	YW	Z
MY3M16	17.2	24	43	M	15	28	48	9.7	8.5	4	114	19	6.5	30	44.6	122
MY3M25	24	34	65	Rc, NP	T, G1/8	40	68	14.5	12.2	6	166	30	9	47	63.6	178
MY3M40	37	49	94	Rc, NP	T, G1/4	100	100	19.5	16.5	8.5	259	40	14	66	93.6	276
MY3M63	58	76	139	Rc, NP	T, G3/8	130	150	23.5	27.5	10	336	64	20	99	138	356

Series MY3M

Slide Bearing Type: Ø16, Ø25, Ø40, Ø63

Stroke adjusting unit Shock absorber for low load + Adjusting bolt MY3M Bore size Stroke L

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3M16	14.1	27.5	32.5	9	2.4	40.8	25.8	6	0.9	25	64	RB0806
MY3M25	20.1	38	44.5	14	3.6	46.7	25.2	7	1.4	28.5	87	RB1007
MY3M40	30.1	54	62.5	24	5	67.3	36.3	12	0.9	39	124	RB1412
MY3M63	36.1	81	92.5	32	6	73.2	36.2	15	0.9	43	176	RB2015

Note) When the stroke adjusting unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited.

Shock absorber for high load + Adjusting bolt MY3M Bore size Stroke H

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3M16	14.1	28.5	34.5	11	2.4	46.7	31.7	7	0.9	25	64	RB1007
MY3M25	20.1	40	49	16	3.6	67.3	45.8	12	1.4	28.5	87	RB1412
MY3M40	30.1	57	69	26	5	73.2	42.2	15	0.9	39	124	RB2015
MY3M63	36.1	84.5	100	32	6	99	62	25	0.9	43	176	RB2725

Note) When the stroke adjusting unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited.

Side Support

Side support B MY-S⊡B

										(mm)
Model	Applicable cylinder	Α	В	С	D	E	F	G	Н	J
MY-S16 ^A B	MY3M16	53	63.6	15	26	4.9	3	6.5	3.4	M4
MY-S25 B	MY3M25	77	91	35	50	8	5	9.5	5.5	M6
MY-S32 ^A B	MY3M40	112	130	45	64	11.7	6	11	6.6	M8
MY-S40 ^A _B	MY3M63	160	182	55	80	14.8	8.5	14	9	M10

Guide for Using Side Support

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.

A Caution

- 1 If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2 Support brackets are not for mounting; use them solely for providing support.

Guide for Using MY3M Side Support

Series MY3 **Auto Switch Specifications**

Auto Switch Proper Mounting Position (for Stroke End Detection)

Note) The operating ranges are provided as guidelines including the hysteresis and are not guaranteed values (with approx. $\pm 30\%$ variations). They may vary significantly with the surrounding environment.

MY3A

D-A9/D-A9_V (mm										
Bore size	Α	В	Operating range							
16	22	88	6.5							
25	29	121	10.5							
40	42.5	197.5	15							
63	53.5	266.5	14							

MY3B/MY3M

D-A9/D-A9 (mr									
Bore size	Α	В	Operating range 6.5						
16	28	94							
25	43	135	10.5						
40	60.5	215.5	15						
63	71.5	284.5	14						

Auto Switch Mounting

When mounting an auto switch, first hold the switch spacer with your fingers and push it into the groove. Confirm that it is aligned evenly within the groove and adjust the position if necessary. Then, insert the auto switch into the groove and

slide it into the spacer. After deciding on the mounting position within the groove, slip in the mounting screw, which is included, and tighten it, using a flat head watchmaker's screw driver.

28

D-F9 W/D-F9 WV

D-F9W/D-F9W (m								
Bore size	Α	A B						
16	26	84	3.0					
25	33	117	4.5					
40	46.5	193.5	6.3					
63	57.5	262.5	6.6					

D-M9_/D-M9_V (mm)										
Bore size	Α	В	Operating range							
16	26	84	2							
25	33	117	3							
40	46.5	193.5	4							
63	57.5	262.5	4.5							

D-F9 W/D-F9 WV

			()
Bore size	Α	В	Operating range
16	32	90	3.0
25	47	131	4.5
40	64.5	211.5	6.3
63	75.5	280.5	6.6

D-M9_/D-M9_V (mm										
Bore size	Α	В	Operating range							
16	32	90	2							
25	47	131	3							
40	64.5	211.5	4							
63	75.5	280.5	4.5							

н

(mm)

Switch Spacer		(mm		
Applicable bore size (mm)	16	25	40	63
Switch spacer		BMYS	3-016	

	Besides the models listed in "How to Order", the following auto switches are applicable. Refer to SMC's Best Pneumatics Catalogue for details.									
1	Туре	Model	Lead wire electrical entry	Output type	Features					
1	Solid state owitch	D-F9G	Crommat (in line)	NPN	Normally closed					
1	Solid State Switch	D-F9H	Gronmer (m-me)	PNP	(NC = b contact)					

SMC

Auto Switch Specifications

T	Dead suiteb		
Гуре	Reed switch	Solid state switch	
Leakage current	None	3-wire: 100 μ A or less, 2-wire: 0.8 mA or less	
Operating time	1.2 ms	1ms or less	
Impact resistance	300 m/s ²	1000 m/s ²	
Insulation resistance	50 M Ω or more at 500 VDC Mega (between lead wire and case)		
Withstand voltage	1000 VAC for 1 min. (bet	ween lead wire and case)	
Ambient temperature	-10 to	9 60°C	
Enclosure	IEC60529 standard IP67	, waterproof (JIS C 0920)	

Lead Wire Length

Solid state switch: All types are produced upon receipt of order.

Note 2) For solid state switches with flexible wire specification, add "-61" at the end of the lead wire length.

* Oil resistant flexible heavy-duty cord is used for D-M9□ as standard. No need to suffix -61 to the end of part number.

(Example) D-F9PWVL- 61

Flexible specification

Contact Protection Box/CD-P11, CD-P12

Applicable switch model>

D-A9 and D-A9 V type switches do not have internal contact protection circuits.

A contact protection box should be used in any of the following situations.

- 1) The operated load is an induction load.
- 2 The length of wiring to the load is 5 m or more.
- ③ The load voltage is 100 VAC.

Contact Protection Box Specifications

Part no.	CD-	CD-P12	
Load voltage	100 VAC 200 VAC		24 VDC
Max. load current	25 mA 12.5 mA		50 mA

^{*} Lead wire length — Switch connection side: 0.5 m Load connection side: 0.5 m

Auto Switch Hysteresis

The hysteresis is the difference between the position of the auto switch as it turns "on" and as it turns "off". A part of operating range (one side) includes this hysteresis.

Contact Protection Box Internal Circuit

Contact Protection Box Dimensions

Contact Protection Box/Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. The switch unit should be kept as close as possible to the contact protection box with a lead wire that is no more than 1 metre in length.

Series MY3 Auto Switch Connections and Examples

Basic Wiring

Examples of Connection to PLC (Programmable Logic Controller)

• Source input specifications 3-wire, PNP

PLC internal circuit

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Examples of AND (Series) and OR (Parallel) Connection

 3-wire (using relays) AND connection for NPN output (using relays)

2-wire with 2-switch AND connection

Example: Power supply is 24 VDC Internal voltage drop in switch is 4 V.

Brown Black Blue

AND connection for NPN output

(performed with switches only)

Black

Blue

Switch 1

The indicator light illuminates when the two switches are in the ON state.

Load

2-wire with 2-switch OR connection

∕⁄∂SMC

Load voltage at OFF = Leakage current \times 2 pcs. \times Load impedance = 1 mA \times 2 pcs. \times 3 k Ω = 6 V Example: Load impedance is 3 k Ω . Leakage current from switch is 1 mA.

OR connection for NPN output

Brow

Black

Blue

Brown

Black

Blue

Switch 1

Switch 2

< Reed> Because there is no current leakage, the load voltage will not increase when turned OFF However, depending on the number of switches in the ON state, the indicator lights may sometimes grow dim or not light up because of the dispersion and reduction of the current flowing to the switches.

Load

30

Reed Switch: Direct Mounting Style D-A90(V)/D-A93(V)/D-A96(V) (€

Grommet Electrical entry: In-line

Caution
Operating Precautions

Do not use anything other than the mounting screws attached to the auto switch body to secure the switch. If screws other than those specified are used, it may cause the switch to be damaged.

Auto Switch Internal Circuit

Note) 1. In the case operation load is an

- inductive load.
- In the case the wiring length to load is more than 5 m.

3. In the case the load voltage is 100 VAC. A contact protection box should be used if any of the above conditions is applicable. (For detailed information about the contact protection box, please refer to page 29.)

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

	PLC: Programmable Logic Controller				
D-A90/D-A90V (Without indicator light)					
Auto switch part no.		D-A90/D-A90V			
Applicable load		IC circuit, Relay, PLC			
Load voltage	24 $V_{\scriptscriptstyle DC}^{\scriptscriptstyle AC}$ or less	48 $V_{\mbox{\tiny DC}}^{\mbox{\tiny AC}}$ or less	100 V $_{\scriptscriptstyle DC}^{\scriptscriptstyle AC}$ or less		
Maximum load current	50 mA	40 mA	20 mA		
Contact protection circuit	None				
Internal resistance	1 Ω or less (including lead wire length of 3 m)				
D-A93/D-A93V/D-A96/D-A96V (With indicator light)					
Auto switch part no.	D-A93/I	D-A93V	D-A96/D-A96V		
Applicable load	Relay	, PLC	IC circuit		
Load voltage	24 VDC	100 VAC	4 to 8 VDC		
Load current range and max. load current Note 3)	5 to 40 mA	5 to 20 mA	20 mA		
Contact protection circuit		None			
Internal voltage drop	D-A93 — 2.4 V or less 3 V or less (1 D-A93V — 2.7 V or les	(to 20 mA)/ to 40 mA) ts	0.8 V or less		
Indicator light	Red LED i	lluminates when turned	ON.		

Lead wires

Oilproof vinyl heavy-duty cord, ø2.7, 0.5 m D-A90(V)/D-A93(V) 0.18 mm² x 2 cores (Brown, Blue)

D-A90(V)/D-A93(V) 0.18 mm² x 2 cores (Brown, Blue) D-A96(V) 0.15 mm² x 3 cores (Brown, Black, Blue)

Note 1) Refer to page 29 for reed switch common specifications.

Note 2) Refer to page 29 for lead wire lengths.

Note 2) Heles than 5 mA condition, the indicating light visibility becomes low, and it may be unreadable in less than 2.5 mA. However, as long as the contact ouput is over a 1 mA condition, there will be no problem.

Weight

D-A93 Model D-A90 D-A90V **D-A93V** D-A96 **D-A96V** Lead wire length: 0.5 m 6 6 6 6 8 8 Lead wire length: 3 m 30 30 30 30 41 41

Dimensions

indicator light

Unit: g

Unit: mm

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V)ſF

Grommet

- 2-wire load current is reduced (2.5 to 40 mA)
- Lead-free
- UL certified (style 2844) lead cable is used.

Operating Precautions

Do not use anything other than the mounting screws attached to the auto switch body to secure the switch. If screws other than those specified are used, it may cause the switch to be damaged.

Auto Switch Internal Circuit

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

			I	PLC: Program	nmable Log	ic Controller
D-M9□, D-M9□	V (With in	dicator lig	ht)			
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3-w	vire		2-v	vire
Output type	N	NPN PNP –			-	
Applicable load		IC circuit, Relay, PLC			24 VDC relay, PLC	
Power supply voltage	5,	5, 12, 24 VDC (4.5 to 28 VDC)			-	
Current consumption		10 mA	or less		-	-
Load voltage	28 VD0	C or less	-	-	24 VDC (10 to 28 VDC)	
Load current		40 mA	or less		2.5 to 40 mA	
Internal voltage drop		80 V c	or less		4 V o	r less
Leakage current		100 μA or less at 24 VDC 0.8 mA or le			or less	
Indicator light		Red LE	ED illuminate	s when turne	d ON.	

Lead wires

Oilproof vinyl heavy-duty cord, 2.7 x 3.2 ellipse

0.15 mm² x 2 cores D-M9B(V)

D-M9N(V)/D-M9P(V) 0.15 mm² x 3 cores Note 1) Refer to page 29 for solid state switch common specifications.

Note 2) Refer to page 29 for lead wire lengths.

Weight

Unit: g

Unit: mm

Model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions

D-M9

2-colour Indication, Solid State Switch: Direct Mounting Style D-F9NW(V)/D-F9PW(V)/D-F9BW(V) (€

Caution
Operating Precautions

Do not use anything other than the mounting screws attached to the auto switch body to secure the switch. If screws other than those specified are used, it may cause the switch to be damaged.

Auto Switch Internal Circuit

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

				PLC: Progra	mmable Log	gic Controller	
D-F9 W/D-	D-F9 W/D-F9 WV (With indicator light)						
Auto switch part no.	D-F9NW	D-F9NWV	D-F9PW	D-F9PWV	D-F9BW	D-F9BWV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3-w	vire		2-	wire	
Output type	N	NPN PNP –				_	
Applicable load	IC circuit, Relay IC, PLC 24 VDC relay,				relay, PLC		
Power supply voltage	5,	5, 12, 24 VDC (4.5 to 28 VDC)			_		
Current consumption		10 mA	or less			_	
Load voltage	28 VDC	or less	-		24 VDC (10 to 28 VDC)		
Load current	40 mA	or less	80 mA	or less	5 to -	40 mA	
Internal voltage drop	1.5 V or less (10 mA loa	0.8 V or less at ad current	0.8 V	or less	4 V or less		
Leakage current		100 µA or les	s at 24 VDC		0.8 m/	A or less	
Indicator light		Derating posi	tion Red ating position	LED illuminat	es. ED illuminate:	S.	

Lead wires

Oilproof vinyl heavy-duty cord, ø2.7, 0.5 m

0.15 mm² x 3 cores (Brown, Black, Blue)

0.18 mm² x 2 cores (Brown, Blue)

Note 1) Refer to page 29 for solid state switch common specifications.

Note 2) Refer to page 29 for lead wire lengths.

Weight

L

Model		D-F9NW(V)	D-F9PW(V)	D-F9BW(V)
ead wire length	0.5	7	7	7
	3	34	34	32
()	5	56	56	52

Dimensions

Unit: mm

Unit: g

Series MY3 Made to Order 1

Please contact SMC for detailed dimensions, specifications and delivery lead times.

Made to Order Application List

Series	Туре	Long stroke	Helical insert threads	Holder mounting bracket	Copper-free
			X168	X416/X417	20-
МҮЗА	Basic short type	•	•		•
MY3B	Basic standard type	•	•	•	•
MY3M	Slide bearing type	•	•	•	•

Long stroke

3

2

Available with long strokes exceeding the standard strokes. The stroke can be set in 1 mm increments.

Stroke range: 2001 to 3000 mm

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.

Helical insert threads

-X416/X417

-X168

Holder mounting brackets are used to fasten the stroke adjusting unit at an intermediate stroke position. Holder mounting bracket (1) -X416 Holder mounting bracket (2) -X417

Fine Stroke Adjustment Range

(Treated as a special order when exceeding the adjustment ranges shown below.) Unit: mm

Bore	-X416 (one side)		-X417 (one side)		
size	Spacer	Adjustment range	Spacer	Adjustment range	
(mm)	Length (l)	MY3B/MY3M	Length (l)	MY3B/MY3M	
16	10	-10 to -20	20	–20 to –30	
25	12	-12 to -24	24	-24 to -36	
40	16	-16 to -32	32	–32 to –48	
63	24	-24 to -48	48	-48 to -72	

Series MY3 Made to Order 2

Please contact SMC for detailed dimensions, specifications and delivery lead times.

SMC

Ordering Example

• L units with one each of X416 and X417 MY3B25-300L-X416Z

• L and H units, where X417 is mounted on L unit only and nothing on H unit

MY3B25-300LH-X417L

• How to order single pieces of stroke adjusting unit

MY3B-A16L1 - X417

Stroke adjusting unit model Note) Refer to the options table of "How to Order" for each series. MY3B \rightarrow Page 9, MY3M \rightarrow Page 23

Example) MY3B-A25L1-X416 (Left side L unit of MY3B25 and X416 bracket)

Ordering Example

• How to order single pieces of holder mounting bracket

Example) MY3B-A25-X416N (X416 bracket for L and H units of MY3B)

Example) 20-MY3M25-300-M9B

Series MY3 **Safety Instructions**

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Explanation of the Labels

Labels	Explanation of the labels
\land Danger	In extreme conditions, there is a possible result of serious injury or loss of life.
\land Warning	Operator error could result in serious injury or loss of life.
▲ Caution	Operator error could result in injury Note 3) or equipment damage. Note 4)

Note 1) ISO 4414: Pneumatic fluid power - General rules relating to systems

Note 2) JIS B 8370: General Rules for Pneumatic Equipment

Note 3) Injury indicates light wounds, burns and electrical shocks that do not require hospitalisation or hospital visits for long-term medical treatment.

Note 4) Equipment damage refers to extensive damage to the equipment and surrounding devices.

Selection/Handling/Applications

1. The compatibility of the pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.

Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or post analysis and/or tests to meet the specific requirements. The expected performance and safety assurance are the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalogue information with a view to giving due consideration to any possibility of equipment failure when configuring a system.

- 2. Only trained personnel should operate pneumatically operated machinery and equipment. Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of the systems using pneumatic equipment should be performed by trained and experienced operators. (Understanding JIS B 8370 General Rules for Pneumatic Equipment, and other safety rules is included.)
- 3. Do not service the machinery/equipment or attempt to remove components until safety is confirmed. 1. Inspection and maintenance of the machinery/equipment should only be performed once measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. If the equipment must be removed, confirm that the safety process as mentioned above. Turn off the supply pressure for the equipment and exhaust all residual compressed air in the system, and release all the energy (liquid pressure, spring, condenser, gravity).
 - 3. Before the machinery/equipment is restarted, take measures to prevent quick extension of a cylinder piston rod, etc.
- 4. If the equipment will be used in the following conditions or environment, please contact SMC first and be sure to take all necessary safety precautions.

 - Conditions and environments beyond the given specifications, or if product is used outdoors.
 Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, clutch and brake circuits in press applications, or safety equipment.
 - 3. An application which has the possibility of having negative effects on people, property, requiring special safety analysis.
 - 4. If the products are used in an interlock circuit, prepare a double interlock style circuit with a mechanical protection function for the prevention of a breakdown. And, examine the devices periodically if they function normally or not.

Exemption from Liability

- 1. SMC, its officers and employees shall be exempted from liability for any loss or damage arising out of earthquakes or fire, action by a third person, accidents, customer error with or without intention, product misuse, and any other damages caused by abnormal operating conditions.
- 2. SMC, its officers and employees shall be exempted from liability for any direct or indirect loss or damage, including consequential loss or damage, loss of profits, or loss of chance, claims, demands, proceedings, costs, expenses, awards, judgments and any other liability whatsoever including legal costs and expenses, which may be suffered or incurred, whether in tort (including negligence), contract, breach of statutory duty, equity or otherwise.
- 3. SMC is exempted from liability for any damages caused by operations not contained in the catalogues and/or instruction manuals, and operations outside of the specification range.
- 4. SMC is exempted from liability for any loss or damage whatsoever caused by malfunctions of its products when combined with other devices or software.

Series MY3 Auto Switch Precautions 1

Be sure to read this before handling.

Design and Selection

A Warning

1. Confirm the specifications.

Read the specifications carefully and use the product appropriately. The product may be damaged or malfunction if it is used outside of its specification range (e.g. load current, voltage, temperature or impact, etc.).

The warranty provided with this product is invalidated if any damage is caused through usage outside of our recommended operational specifications.

2. Pay attention to the length of time that a switch is on at an intermediate stroke position.

When an auto switch is placed at an intermediate position of the stroke and a load connected to the auto switch is driven at the time the slide table passes, the auto switch will operate. However, if the speed is too great, the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$V (mm/s) = \frac{Auto switch operating range (mm)}{Load operating time (ms)} \times 1000$$

3. Keep wiring as short as possible. <Reed switch>

As the length of the wiring to a load gets longer, the rush current at the time the switch is turned ON becomes greater, which may shorten the product's service life. (The switch will stay ON all the time.)

Use a contact protection box when the wire length is 5 m or longer.

<Solid state switch>

Although the wire length should not affect switch function, use a wire that is 100 m or shorter.

4. Do not use a load that generates surge voltage.

<Reed switch>

If driving a load such as a relay which generates a surge voltage, use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state switch, damage may still occur if a surge is applied repeatedly. When directly driving a load which generates a surge, such as a relay or solenoid valve, use a switch with a built-in surge absorbing element.

5. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to safeguard against malfunctions. The double interlock system should provide a mechanical protection function or use another switch (sensor) together with the auto switch. Also, perform periodic inspection and confirm proper operation.

6. Prohibition of dis-assembly, remodel (including any printed circuit board changes) and repair

Do not take the product apart, to either remodel (including any printed circuit board changes) or make repairs.

Caution

1. Use caution when multiple cylinders (actuators) are used and close to each other.

When two or more auto switch cylinders (actuators) are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm. (When the allowable interval is specified for each cylinder series, use the indicated value.)

2. Take precautions for the internal voltage drop of the switch. <Reed switch>

1) Switches with an indicator light (Except D-A96, A96V)

• If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance from the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.) [The voltage drop will be "n" times larger when "n" auto switches are connected.]

Even though an auto switch operates normally, the load may not operate.

_____ O____ O____ O___ Load

- Similarly, when operating below a specified voltage, it is possible that the load may be ineffective even though the auto switch function is normal. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.
 - Supply _ Internal voltage > Minimum operating voltage drop of switch > voltage of load
- 2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Models D-A90, A90V).

<Solid state switch>

3) Generally, the internal voltage drop will be greater with a 2wire solid state switch than with a reed switch. Take the same precautions as in item (1) as mentioned above. Also, note that a 12 VDC relay is not applicable. Series MY3 Auto Switch Precautions 2

Be sure to read this before handling.

Design and Selection

ACaution

3. Pay attention to leakage current.

<Solid state switch>

With a 2-wire solid state switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Current to operate load (Input OFF signal of controller) > Leakage current

If the condition given in the above formula is not met, internal circuit will not reset correctly (stays ON). Use a 3-wire switch if this specification cannot be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

4. Provide enough space for maintenance.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting and Adjustment

A Warning

1. Instruction manual

Install the products and operate them only after reading the instruction manual carefully and understanding its contents. Also keep the manual where it can be referred to as necessary.

2. Do not drop or bump.

Do not drop, bump or apply excessive impacts (300 m/s^2 or more for reed switches and 1000 m/s^2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

3. Mount switches using the proper tightening torque.

When a switch is tightened beyond the range of tightening torque, the mounting screws, or switch may be damaged.

On the other hand, tightening below torque range may allow the switch to slip out of position. (Refer to switch mounting for each series regarding switch mounting, moving, and fastening torque, etc.

4. Mount a switch at the centre of the operating range.

Adjust the mounting position of an auto switch, so that the piston stops at the centre of the operating range (the range in which a switch is stayed ON). (The mounting positions shown in the catalogue indicate the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

<D-M9□>

When the D-M9 auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.

Such as

- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced.)

In these applications, set the auto switch to the centre of the required detecting range.

Mounting and Adjustment

5. Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Caution

1. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

2. Fix the switch with appropriate screw installed on the switch body. If using other screws, switch may be damaged.

Wiring

Warning 1. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (such as contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

2. Do not wire in conjunction with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied.

<2-wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Do not allow short circuit of loads. <Reed switch>

If the power is turned ON with a load in a short-circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switch>

The switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.

Take special care to avoid reverse wiring with the brown power supply line and the black output line on 3-wire type switches.

Series MY3 Auto Switch Precautions 3

Be sure to read this before handling.

Wiring

ACaution

4. Avoid incorrect wiring.

<Reed switch>

A 24 VDC switch with indicator light has polarity. The brown lead wire is (+), and the blue lead wire is (-).

- 1) If connections are reversed, the switch will still operate, but the light emitting diode will not be illuminated.
 - Also note that a current greater than the maximum specified one will damage a light emitting diode and make it inoperable.

Applicable models: D-A93, A93V

<Solid state switch>

- Even if connections are reversed on a 2-wire type switch, the switch will not be damaged because it is protected by a protection circuit, but it will remain in a normally ON state. But reverse wiring in a load short circuit condition should be avoided to protect the switch from being damaged.
- 2) Even if power supply line (+) and power supply line (-) power supply line connections are reversed on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line (-) is connected to the black wire, the switch will be damaged.

<D-M9□>

D-M9 \square does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g. (+) power supply wire and (–) power supply wire connection is reversed), the switch will be damaged.

5. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9□ only)

Recommended Tool

Model name	Model no.
Wire stripper	D-M9N-SWY

* Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

Operating Environment

1. Never use in an atmosphere of explosive gases.

The construction of the auto switch is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

The auto switch will malfunction or the magnets inside of a cylinder will become demagnetised if used in such an environment. (Please consult with SMC regarding the availability of a magnetic field resistant auto switch.)

3. Do not use in an environment where the auto switch will be continually exposed to water.

The switch satisfies the IEC standard IP67 construction (JIS C 0920: waterproof construction). Nevertheless, it should not be used in applications where it is continually exposed to water splash or spray. This may cause deterioration of the insulation or swelling of the potting resin inside switch causing a malfunction.

4. Do not use in an environment with oil or chemicals.

Please consult with SMC if the auto switch will be used in an environment laden with coolant, cleaning solvent, various oils or chemicals. If the auto switch is used under these conditions for even a short time, it may be adversely effected by a deterioration of the insulation, a malfunction due to swelling of the potting resin, or hardening of the lead wires.

5. Do not use in an environment with temperature cycles.

Please consult with SMC if the switch is used where there are temperature cycles other than normal temperature changes, as they may adversely affected the switch internally.

6. Do not use in an environment where there is excessive impact shock.

<Reed switch>

When excessive impact (300 m/s² or more) is applied to a reed switch during operation, the contact point may malfunction and generate a signal momentarily (1 ms or less) or cut off. Please consult with SMC regarding the need to use a solid state switch in a specific environment.

7. Do not use in an area where surges are generated.

<Solid state switch>

When there are units (such as solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge in the area around a cylinder with a solid state auto switch, their proximity or pressure may cause deterioration or damage to the internal circuit of the switch. Avoid sources of surge generation and crossed lines. Series MY3 Auto Switch Precautions 4 Be sure to read this before handling.

Operating Environment

ACaution

1. Avoid accumulation of iron debris or close contact with magnetic substances.

The auto switches in an actuator may malfunction when a large accumulated amount of machining chips, welding spatter and or magnetically attracted material is located near the auto switch. This failure may be the result of loss magnetic force inside of the actuator.

- 2. Please consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.
- 3. Do not use in direct sunlight.
- 4. Do not mount the product in locations where it is exposed to radiant heat.

Maintenance

AWarning

- 1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
 - 1) Securely tighten switch mounting screws.
 - If screws become loose or the mounting position is dislocated, retighten them after re-adjusting the mounting position.
 - Confirm that there is no damage to the lead wires. To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
 - 3) Confirm that the green light on the 2-colour display type switch is illuminated.

Confirm that the green LED is turned ON when stopped at the set position. If the red LED is turned ON, when stopped at the set position, the mounting position is not appropriate. Re-adjust the mounting position until the green LED is illuminated.

2. Perform maintenance inspection according to the procedure indicated in the instruction manual.

Improper handling and maintenance may cause damage to human beings and malfunctioning and damage of machinery or equipment to occur.

3. Removal of components, and supply/exhaust of compressed air.

When the equipment is removed, first check measures to prevent dropping of driven objects and run away of the equipment, etc. Then, cut off the supply pressure and electric power, and exhaust all compressed air from the system. When the machinery is restarted, proceed with caution after confirming measures to prevent a cylinder from lurching.

Series MY3 Specific Product Precautions 1

Be sure to read this before handling. For Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

Caution on Design

A Warning

1. A deceleration circuit or shock absorber may be required.

When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In cases such as these, the rigidity of the machinery should also be examined.

* The external shock absorber should conform to the conditions on page 7. Use caution because the use of a shock absorber falling short of the recommended conditions may damage the cylinder.

ACaution

1. Due to structural differences, fluctuations in the operating speed of mechanically jointed rodless cylinders may be larger than rod type air cylinders.

Please consult with SMC if you require a precise, constant, speed in your application.

Selection

ACaution

1. Provide intermediate supports for long stroke cylinders.

Provide intermediate supports for cylinders with long strokes to prevent damage due to deflection of the tube, vibration and external loads.

For detailed information, please refer to "Guide for Using Side Support" on page 15 and 27.

Mounting

Caution

1. Do not apply strong impacts or excessive moment to the slide table (slider).

Do not apply strong impact or excessive moment in mounting the work piece because the slide table (slider) is supported by resin bearings.

2. Align carefully when connecting to a load having an external guide mechanism.

A mechanically jointed rodless cylinder can be used with a direct load within the allowable range for each guide type, however, careful alignment is required when connecting to a load having an external guide mechanism. The longer the stroke, the larger the deflection of the axis centre becomes. Therefore, adopt an appropriate connection method (floating mechanism) to absorb the difference. For the MY3A and MY3B series, dedicated floating mechanism brackets are available (page 16).

3. At each end of the cylinder, secure a mounting surface with a 5 mm or longer area that contacts the lower side of the cylinder.

_]		
				777
<i>\//////</i>	5 mm or more	5 mm or more	////	'///\

4. If the cylinder is mounted on the ceiling or wall under the condition where high load factors or impacts are expected, use side supports, in addition to the fixing bolts on the head cover, to support both ends of the cylinder tube.

Operating Environment

Warning

- 1. Avoid use in environments where a cylinder will come in contact with coolants, cutting oil, droplet of water, adhesive matter, or dust, etc. Also avoid operation with compressed air that contains drainage or foreign matter, etc.
- Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil drops, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

Series MY3 Specific Product Precautions 2

Be sure to read this before handling. For Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

Maintenance

Caution Centralised Piping Port Variations

• Head cover piping connection can be freely selected to best suit different piping conditions.

1. Use caution not to have your hands caught in the unit.

Handling

When using a cylinder with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

2. Do not use the cylinder when the pressure inside the cylinder will turn to negative pressure.

In operating conditions where negative pressure is generated inside a cylinder — by the external force or inertial force, etc.— be careful as the seal may distort or detach, resulting in air leakage.

3. The stroke adjusting unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

Loosen the unit fixing bolt and remove the stroke adjusting unit before mounting the cylinder. After fixing the cylinder, move the stroke adjusting unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts.

(Refer to back page 8, "MY3B/MY3M Stroke Adjusting Unit Tightening Torque for Fixing Bolts".)

4. Use an external guide for the MY3B stroke adjusting unit.

The stroke adjusting unit must be used on condition that an external guide is used. If a stroke adjusting unit is used where the cylinder is used alone, the collision reaction may cause damage to the cylinder.

Handling

A Caution

5. Conduct stroke adjustment with an adjusting bolt as follows:

The adjusting bolt should be secured against the same surface as the shock absorber after stroke adjustment.

If the stopper surface of the shock absorber and the end surface of the adjusting bolt are not on the same level, it may result in an unstable stop position of the slide table or reduced durability.

6. Securing the unit body

<MY3B>

<MY3M> <u>Absorber fixing bolt</u> <u>Adjusting bolt lock nut</u> <u>Stroke adjusting unit fixing bolt</u> <u>Shock absorber</u> <u>Shock absorber</u>

Tighten the four unit fixing bolts equally to secure the unit body.

Back page 7

Series MY3 Specific Product Precautions 3

Be sure to read this before handling. For Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

Handling

A Caution

7. Do not fix and use the stroke adjusting unit at an intermediate position (MY3B/MY3M).

If the stroke adjusting unit is fixed at an intermediate position, an error may result depending on the collision energy. In that case, the use of the holder mounting bracket for adjustment is recommended. It is provided with the "-X416" or "-X417" made-to-order specification.

(Refer to "MY3B/MY3M Stroke Adjusting Unit Tightening Torque for Fixing Bolts.")

If the stroke adjusting unit is used at an intermediate position, the energy absorption capacity may be different. Refer to the maximum absorbed energy on page 6 and 21 and operate within the allowable absorption energy.

<Stroke adjustment of the adjusting bolt>

Loosen the lock nut for the adjusting bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

<Stroke adjustment of the shock absorber: MY3B>

Loosen the two unit fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the unit fixing bolts equally to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "MY3B/MY3M Stroke Adjusting Unit Tightening Torque for Fixing Bolts.")

<Stroke adjustment of the shock absorber: MY3M>

Loosen the fixing bolt for the shock absorber. Rotate the shock absorber and adjust it. Then, tighten the fixing bolt for the shock absorber and secure the shock absorber. Additionally, please be careful that the fixing bolt should not be tightened excessively.

(Refer to "MY3M Shock Absorber Tightening Torque for Fixing Bolts".)

Lightening lorque for Fixing Bolts		
Bore size (mm)	Unit	Tightening torque
16	L	0.6
	Н	
25	L	3.0
	Н	
40	L	12
	Н	
63	L	24
	Н	

MY3B/MY3M Stroke Adjusting Unit Tightening Torgue for Fixing Bolts

MY3M Shock Absorber Tightening Torque for Fixing Bolts

Bore size (mm)	Unit	Tightening torque
16	L	0.6
	Н	
25	L	1.5
	Н	
40	L	3.0
	Н	
63	L	5.0
	Н	

Unit: N•m

EUROPEAN SUBSIDIARIES:

Austria

SMC Pneumatik GmbH (Austria). Girakstrasse 8, A-2100 Korneuburg Phone: +43 2262-62280, Fax: +43 2262-62285 E-mail: office@smc.at http://www.smc.at

Nijverheidsstraat 20, B-2160 Wommelgem Phone: +32 (0)3-355-1464, Fax: +32 (0)3-355-1466 E-mail: post@smcpneumatics.be http://www.smcpneumatics.be

SMC Industrial Automation Bulgaria EOOD 16 kliment Ohridski Blvd., fl.13 BG-1756 Sofia Phone:+359 2 9744492, Fax:+359 2 9744519 E-mail: office@smc.bg http://www.smc.bg

Croatia

SMC Industrijska automatika d.o.o. Crnomerec 12, 10000 ZAGREB Phone: +385 1 377 66 74, Fax: +385 1 377 66 74 E-mail: office@smc.hr http://www.smceu.com

Czech Republic

SMC Industrial Automation CZ s.r.o. Hudcova 78a, CZ-61200 Brno Phone: +420 5 414 24611, Fax: +420 5 412 18034 E-mail: office@smc.cz http://www.smc.cz

SMC Pneumatik A/S Knudsminde 4B, DK-8300 Odder Phone: +45 70252900, Fax: +45 70252901 E-mail: smc@smc-pneumatik.dk http://www.smcdk.com

Estonia SMC Pneumatics Estonia OÜ Laki 12-101, 106 21 Tallinn Phone: +372 (0)6 593540, Fax: +372 (0)6 593541 E-mail: smc@smcpneumatics.ee http://www.smcpneumatics.ee

SMC Pneumatics Finland OY PL72, Tiistinniityntie 4, SF-02031 ESPOO Phone: +358 207 513513, Fax: +358 207 513595 E-mail: smcfi@smc.fi http://www.smc.fi

France SMC Pneumatique, S.A

1, Boulevard de Strasbourg, Parc Gustave Eiffel Bussy Saint Georges F-77607 Marne La Vallee Cedex 3 Phone: +33 (0)1-6476 1000, Fax: +33 (0)1-6476 1010 E-mail: contact@smc-france.fr http://www.smc-france.fr

SMC Pneumatik GmbH Boschring 13-15, D-63329 Egelsbach Phone: +49 (0)6103-4020, Fax: +49 (0)6103-402139 E-mail: info@smc-pneumatik.de http://www.smc-pneumatik.de

Greece S. Parianopoulus S.A. 7, Konstantinoupoleos Street, GR-11855 Athens Phone: +30 (0)1-3426076, Fax: +30 (0)1-3455578 E-mail: parianos@hol.gr http://www.smceu.com

Hungary SMC Hungary Ipari Automatizálási Kft. Budafoki ut 107-113, H-1117 Budapest Phone: +36 1 371 1343, Fax: +36 1 371 1344 E-mail: office @ smc-automation.hu http://www.smc-automation.hu

Ireland SMC Pneumatics (Ireland) Ltd. 2002 Citywes Business Campus, Naas Road, Saggart, Co. Dublin Phone: +353 (0)1-403 9000, Fax: +353 (0)1-464-0500 E-mail: sales@smcpneumatics.ie http://www.smcpneumatics.ie

Phone: +39 (0)2-92711, Fax: +39 (0)2-9271365 E-mail: mailbox@smcitalia.it http://www.smcitalia.it

SMC Pneumatics Latvia SIA Smerla 1-705, Riga LV-1006, Latvia Phone: +371 781-77-00, Fax: +371 781-77-01 E-mail: info@smclv.lv

Savanoriu pr. 180, LT-01354 Vilnius, Lithuania Phone: +370 5 264 81 26, Fax: +370 5 264 81 26

De Ruyterkade 120, NL-1011 AB Amsterdam Phone: +31 (0)20-5318888, Fax: +31 (0)20-5318880 E-mail: info@smcpneumatics.nl http://www.smcpneumatics.nl

SMC Pneumatics Norway A/S Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker Tel: +47 67 12 90 20, Fax: +47 67 12 90 21 E-mail: post@smc-norge.no http://www.smc-norge.no

Poland SMC Industrial Automation Polska Sp.z.o.o. ul. Konstruktorska 11A, PL-02-673 Warszawa, Phone: +48 22 548 5085, Fax: +48 22 548 5087 E-mail: office@smc.pl http://www.smc.pl

Portugal SMC Sucursal Portugal, S.A. Rua de Eng^e Ferreira Dias 452, 4100-246 Porto Phone: +351 22-610-89-22, Fax: +351 22-610-89-36 E-mail: postpt@smc.smces.es http://www.smces.es

SMC Romania srl Str Frunzei 29, Sector 2, Bucharest Phone: +40 213205111, Fax: +40 213261489 E-mail: smcromania@smcromania.ro http://www.smcromania.ro

Russia SMC Pneumatik LLC. 4B Sverdlovskaja nab, St. Petersburg 195009 Phone::+812 718 5445, Fax:+812 718 5449 E-mail: info@smc-pneumatik.ru http://www.smc-pneumatik.ru

Slovakia SMC Priemyselná Automatizáciá, s.r.o. Námestie Martina Benku 10, SK-81107 Bratislava Phone: +421 2 444 56725, Fax: +421 2 444 56028 E-mail: office@smc.sk http://www.smc.sk

Slovenia SMC industrijska Avtomatika d.o.o. Grajski trg 15, SLO-8360 Zuzemberk Phone: +386 738 85240 Fax: +386 738 85249 E-mail: office@smc-ind-avtom.si http://www.smc-ind-avtom.si

SMC España, S.A. Zuazobidea 14, 01015 Vitoria Phone: +34 945-184 100, Fax: +34 945-184 124 E-mail: post@smc.smces.es http://www.smces.es

Sweden SMC Pneumatics Sweden AB Ekhagsvägen 29-31, S-141 71 Huddinge Phone: +46 (0)8-603 12 00, Fax: +46 (0)8-603 12 90 E-mail: post@smcpneumatics.se http://www.smc.nu

Switzerland

SMC Pneumatik AG Dorfstrasse 7, CH-8484 Weisslingen Phone: +41 (0)52-396-3131, Fax: +41 (0)52-396-3191 E-mail: info@smc.ch http://www.smc.ch

Entek Pnömatik San. ve Tic Ltd. Sti. Perpa Tic. Merkezi Kat: 11 No: 1625, TR-80270 Okmeydani Islanbul Phone: +90 (0)212-221-1512, Fax: +90 (0)212-221-1519 E-mail: smc-entek@entek.com.tr http://www.entek.com.tr

SMC Pneumatics (UK) Ltd Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN Phone: +44 (0)800 1382930 Fax: +44 (0)1908-555064 E-mail: sales@smcpneumatics.co.uk http://www.smcpneumatics.co.uk

http://www.smceu.com http://www.smcworld.com

OTHER SUBSIDIARIES WORLDWIDE: ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, INDONESIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILAND, USA, VENEZUELA

Italy SMC Italia S.p.A Via Garibaldi 62, I-20061Carugate, (Milano)

