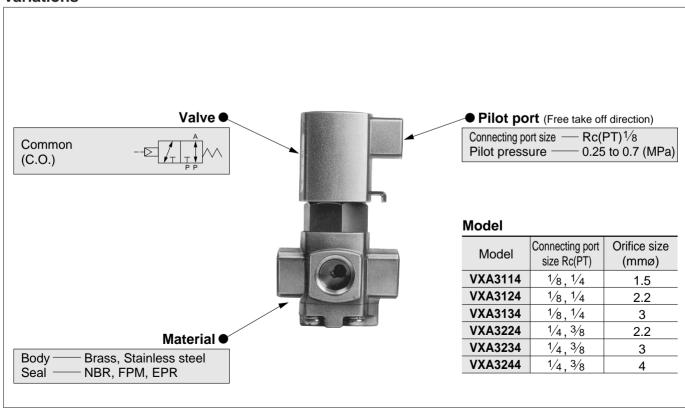

Direct Air Operated 3 Port Valve

Series VXA31/32

For Air, Gas, Vacuum, Water and Oil

Proper selection of body and sealing materials permits application of a wide variety of fluids.

Application can be matched by simply choosing body material (Brass or Stainless steel) and seal material(NBR, FPM or EPR).


- C.O. style easy to use; operatable as either N.C. or N.O.
- Easy to disassemble and reassemble in a short time.
- Compatible with high viscosity fluids (500cSt).

VN

VQ

Variations

Common (C.O.)

Applicable Fluids

Standard	Option (1)
Water (Standard, Up to 40°C)	Vacuum (Up to 10 ⁻³ Torr) ······ (V, M)
Air (Standard, Dry),	Non-leak (10 ⁻⁵ atm cc/sec or less)······ (V, M)
Turbine oil,	
Vacuum (Up to 1 Torr),	
Carbon dioxide (CO ₂), Nitrogen gas (N ₂),	
Freon11, 113, 114	

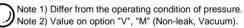
Note 1) Refer to p.4.0-13 "Applicable Fluid Check List" for detail of a special fluid out of the standard and the option specifications.

Model/Valve Specifications

Port size	Orifice size		rate Effective	Model	Max. operating pressure differential	Max. system pressure	Proof pressure	Weight		
Rc(PT)	(mmø)	Cv	orifice (mm²)		(MPa)	(MPa)	(MPa)	(g)		
	1.5	0.08	1.4	VXA3114	1.0		1.5			
1/8 (6A)	2.2	0.16	2.8	VXA3124	0.5			280		
	3	0.24	4.3	VXA3134	0.3					
	1.5	0.08	1.4	VXA3114	1.0	1.0				
	2.2	0.16	2.8	VXA3124	0.5					
1/ ₄ (8A)		0.19	3.4	VXA3224	1.0			410		
1/4 (OA)	3	0.24	4.3	VXA3134	0.3			280		
	9	0.33	6	VXA3234	0.6					
	4	0.5	9	VXA3244	0.3					
	2.2	0.19	3.4	VXA3224	1.0			410		
3/8 (10A)	3	0.33	6	VXA3234	0.6					
,	4	0.5	9	VXA3244	0.3					

Note 1) Refer to p.4.0-14 the glossary for detail of max.operating pressure differential and max. system pressure.

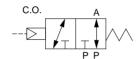
Ambient and Fluid Temperature

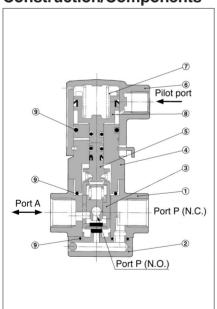

		Ambient			
Temperature	Water (Standard)	Air (Standard)	Oil (Standard)	Vacuum ⁽³⁾ (V, M)	temperature °C
Max.	40	60	40	40	40
Min.	1	-5 ⁽¹⁾	-5 ⁽²⁾	- 5	-5

Note 1) Dew point: -10°C or less. Note 2) 500cSt or less.

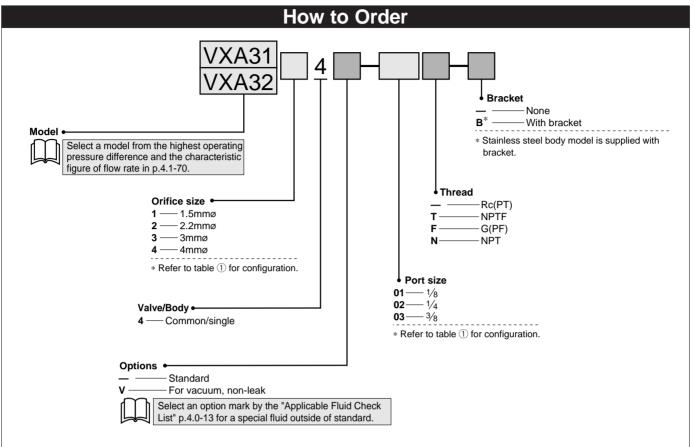
Note 3) "V", "M" in the parenthesis are option symbols.

Tightness of Valve(Leakage)


Fluid	Air	Liquid	Non-leak, Vacuum (2)
NBR, FPM, EPR	≤1 cm³/min	≤0.1cm ³ /min ⁽¹⁾	≤10 ⁻⁵ atm cc/sec


Pilot Pressure

Model	Pressure MPa
VXA31□4 VXA32□4	0.25 to 0.7


Symbol

Construction/Components

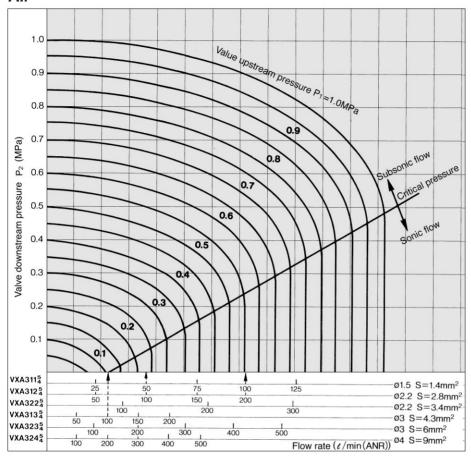
NIo	Description	Mat	erial
INO.	Description	Standard	Option
1	Body assembly	Brass	Stainless steel
2	Retainer assembly	Brass	Stainless steel
3	Valve	NBR	FPM/EPR
9	assembly	Polyacetal	Stainless steel
4	Adapter	Brass	Stainless steel
(5)	Travel	Stainless steel,	FPM/EPR
	assembly	NBR, Polyacetal	Stainless steel
6	Pilot cover	Aluminium	_
7	Piston spring	Stainless steel	_
8	Piston assembly	Polyacetal, NBR	_
9	O ring	NBR	FPM/EPR

Table 1 Port/Orifice Size

			_				
Valve (P	ort size)		Orifice size (No.)				
VXA31	WWADD	1	2	3	4		
VAASI	VXA32	(1.5mmø)	(2.2mmø)	(3mmø)	(4mmø)		
01 (1/8)	_	•	•	•	_		
02 (1/4)	_	•	•	•	_		
_	02 (1/4)	_	•	•	•		
_	03 (3/8)	_	•	•	•		

Ordering Example

(Example) Series VXA31, Orifice size 1.5mmø, Rc(PT)1/8 (Part number) **VXA3114-01**

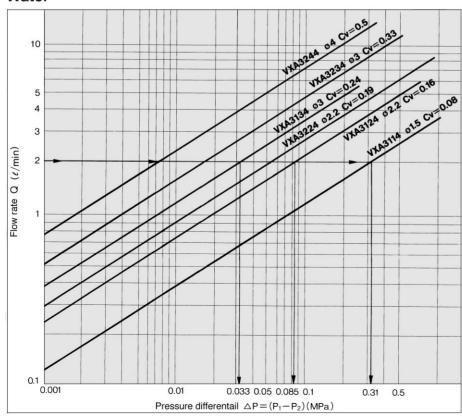

VX

VN□

VQ

VXA31/32

Air


How to Read the Graph

In the sonic flow region: For a flow of 100 ℓ /min.(ANR) Orifice Ø3 (VXA313 $_0^4$)......P₁ \cong 0.1MPa Orifice Ø2.2 (VXA312 $_0^4$).....P₁ \cong 0.23MPa Orifice Ø1.5 (VXA311 $_0^4$).....P₁ \cong 0.55MPa

How to Calculate Flow/Air

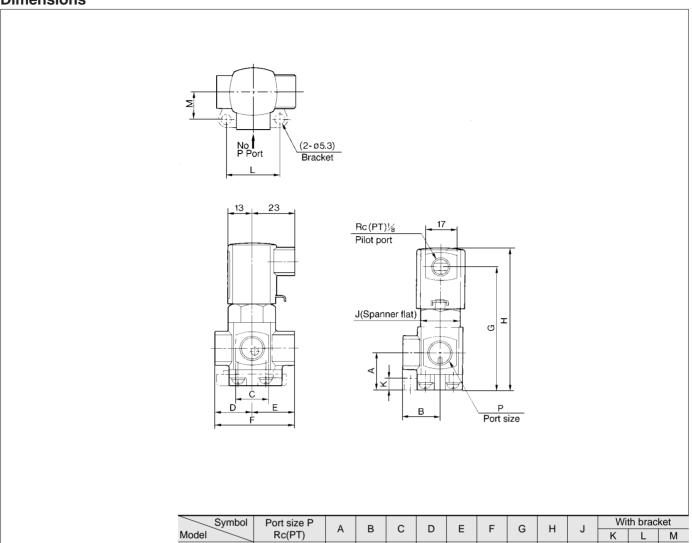
- ①Equation in the domain of subsonic flow P₁+0.1013=(1 to 1.8941)(P₂+0.1013)
- Calculation by Cv factor Q=4073.4·Cv·√△P(P₂+0.1013)········ℓ/min(ANR)
- Calculation by effective area Q=226.3·S· √△P(P₂+0.1013) ··············/min(ANR)
- ②Equation in the domain of sonic flow $P_1+0.1013 \ge 1.8941(P_2+0.1013)$
- Calculation by Cv factor Q=1972.8·Cv·(P₁+0.1013)···············//min(ANR)
- Calculation by effective area Q=109.6·S·(P₁+0.1013)·······/min(ANR)

Water

How to Read the Graph

In case of a flow of 2 ℓ /min. Orifice Ø3 valve (VXA3134).... \triangle P \cong 0.033MPa Orifice Ø2.2 valve (VXA3124)... \triangle P \cong 0.085 MPa Orifice Ø1.5 valve (VXA3114)... \triangle P \cong 0.31MPa

How to Calculate Flow/Water


- Calculation by Cv factor
 Q=14.2·Cv·√10.2·△P/min
 Calculation by effective area[Smm²]
 Q=0.8·S·√10.2·△P/min
- Q: Flow (Air \(\ell \)min(ANR)), (Steam kg/h), (Water \(\ell \)min)
- △P: Pressure differential (P₁–P₂) P₁: Upstream pressure (MPa) P₂: Downstream pressure (MPa)

θ : Fluid temperature (°C)S : Effective area (mm²)

Cv : Cv factor (/)

VXA31/32

Dimensions

VX

VN□

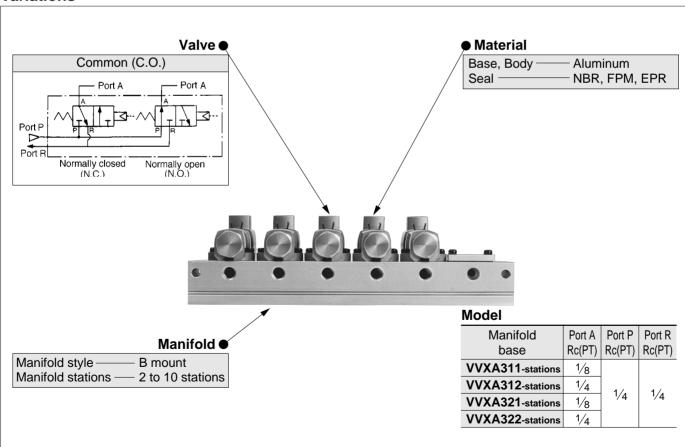
VQ

Symbol	Port size P		_	_					_	_			Wi	th brac	ket
Model	Rc(PT)	Α	В	С	D	E	F	G	H	J	K	L	М		
VXA31	1/8, 1/4	19	20	18	20	22.5	42.5	71	81	21	6	29	14.5		
VXA32	1/4,3/8	25	20	21	20	27.5	47.5	80	90	27	7.5	32	17		

Direct Air Operated 3 Port Valve/Manifold

Series VVXA31/32

For Air, Gas, Vacuum and Oil


Compatible with a wide variety of fluids.

Application can be matched by simply choosing the correct seal material (NBR, FPM or EPR).

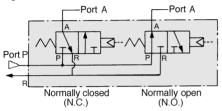
- It is possible to replace valve without changing existing piping.
- Configuration can be changed from N.C. to N.O., and from N.O. to N.C. easily.
- Weight-saving aluminum base and body.

(Not applicable to water or steam.)

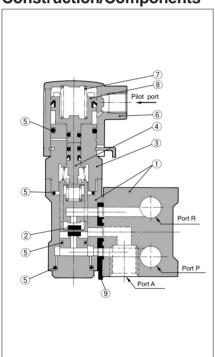
Variations

VN□ VQ

Common (C.O.)


Applicable Fluids

Standard	Option (1)
Air (Standard, Dry),	Vaccum (Up to 10 ⁻³ Torr)(V)
Vaccum (Up to 1 Torr),	Non-leak or less (10 ⁻⁵ atm cc/sec or less)(V)
Turbine oil,	
Carbon dioxide (CO ₂), Nitrogen gas (N ₂)	
Freon 11, 113, 114	Others



Note 1) Refer to p.4.0-13 "Applicable Fluid Check List" for detail of a special fluid out of the standard and the option specifications.

Symbol

Construction/Components

No	Description	Mate	erial
INO.	Description	Standard	Options
1	Manifold body,	Aluminum	Brass
	base		(Base is aluminum.)
2	Valve	NBR	EPR/FPM
(2)	assembly	Polyacetal	LITOTIN
3	Adapter	Aluminum	EPR/FPM
	Travel	NBR	EDD/EDM
4	assembly	Polyacetal	EPR/FPM
(5)	O ring	NBR	EPR/FPM
6	Pilot cover	Aluminum	_
7	Piston spring	Stainless steel	_
	Distant	NBR	
8	Piston	Polyacetal	_
9	Gasket	NBR	FPM/EPR

Manifold Specifications

Manifold	B Mount				
Manifold base	Common supply, Common exhaust, Common out				
Number of valves	2 to 10 stations				
Blanking plate	VVXA31 VX011-004				
(With gasket, screws)	screws) VVXA32 VX011-00				

Manifold Base and Applicable Valve

Manifold base	Individual port Rc(PT)	Applicable valve	Base weight (g)	
VVXA311-stations	1/8	VXA31□5-00	n X 100+50	
VVXA312-stations	1/4	VXA31⊟3-00	11 × 100+50	
VVXA321-stations	1/8	VXA32□5-00	n X 160+70	
VVXA322-stations	1/4	VAA32⊟3-00	11 × 160+70	

Model/Valve Specifications

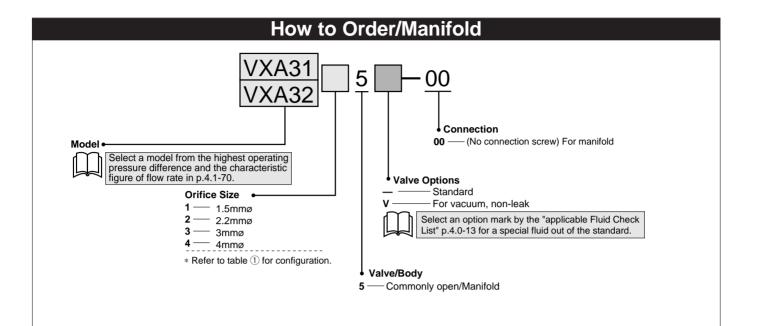
		•					
Orifice size (mmø)		rate Effective area (mm²)		Max. operating pressure differential (MPa)	Max. system pressure (MPa)	Proof pressure (MPa)	Weight (g)
()		()		(۵)	, ,		
1.5	0.08	1.4	VXA3115-00	1.0		1.5	150
2.2	0.16	2.8	VXA3125-00	0.5	1.0		
	0.19	3.4	VXA3225-00	1.0			230
3	0.24 4.3	VXA3135-00	0.3	1.0	1.5	150	
	0.33	6	VXA3235-00	0.6	1		230
4	0.5	9	VXA3245-00	0.3			

- Note 1) Add the V type (VXA31) 80g, (VXA32)130g.
 - Refer to p.4.0-14 the glossary for detail of max. operating pressure and max. system.

Ambient and Fluid Temperature

	F			
Temperature	Air	Oil	Vacuum ⁽³⁾	Ambient temperature
	(Standard)	(Standard)	(V)	°C
Max.	60	40	40	40
Min.	-5 ⁽¹⁾	-5 ⁽²⁾	- 5	-5

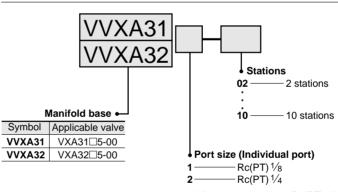
Note 1) Dew point: -5°C or less Note 2) 500cSt or less Note 3) "V" in the parenthesis is option symbol.


Tightness of Valve(Leakage)

Fluid	Air	Liquid	Non-leak, Vacuum ⁽²⁾
NBR, FPM, EPR	≤1 cm³/min	≤0.1cm ³ /min ⁽¹⁾	≤10 ⁻⁵ atm cc/sec

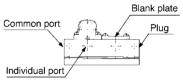
Note 1) Differ from the operating conditon of pressure. Note 2) Value on option "V" (Non-leak, Vacuum).

Pilot Pressure


Model	Pressure MPa
VXA31□5 VXA32□5	0.25 to 0.7

2	3	4
2mmø)	(3mmø)	(4mmø)
•	•	_
•	•	•
	2mmø) ●	2mmø) (3mmø) ● • • • •

How to Order Manifold Base

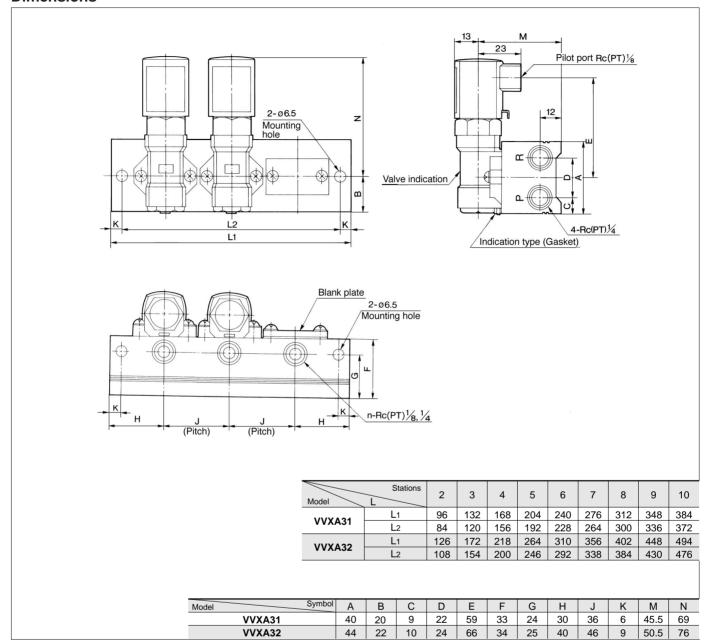


* All common ports are Rc(PT) 1/4. The common SUP is indicated as "P" on the common port and the individual SUP is indicated as "VAC".

■Write both the base style and the style of valve or ■Arrangement of solenoid valves blank plate manifold.

(Example) 7stations of VXA31, Individual port Rc(PT)1/8

(Base) VXA311-07----- 1 pc (Valve) VXA3115-00---- 6 pcs. (Blank plate) VX011-004-----1 pc.


The standard arrangement of manifolds should be placed on an individual port on this side, each solenoid valve from the left side and a blank plate in the right side. The right side of the common port provides plug.

VN□

VQ

VVXA31/32

Dimensions

