For General Purpose 2/3 Port Valve

Process Valve/Series VN

The cylinder operation by external pilot airCan be operated with pressure differential zero.Wide variations

For controlling the high pressure cutting oils and coolants used in machine tools. Maximum operating pressure: 3.5MPa, 7MPa

For steam control PTFE seal adopted With indicator (Option)

Series VN

Process Valve

Series		Process valve Series VNA Series VNB		Coolant valve Series VNC		Coolant valve for high pressure Series VNH		n valve s VND					
١	/alve Style		N.C.	N.O.	C.O.	N.C.	N.O.	C.O.	N.C.	N.O.	N.C.	N.C.	N.O.
<u>.</u>	Water					•	•	•	—		—	—	
l∰	Air		•	•	•	•	•	•	—	—			—
ple	Oil			•	•	•	•	•	•	•	•	—	—
ica	Low vacuum	n (1 Torr)		—	_	•	•	•	—	—	—		—
ldd	Coolant			—	—			—	•	•	•		—
$\overline{\triangleleft}$	Steam			—	—						—	•	•
		1/8		•	•	•	•	•	•	•	—	•	
		1/4	•	•	•	•	•	•	•	•	_	•	•
		3⁄8	•	•	•	•	•	•	•	•	•	•	•
		1/2	•	•	•	•	•	•	•	•	•	•	•
	Rc(PT)	3/4	•	•	•	•	•	•	•	•	•	•	•
Ze	· · ·	1	•	•	•	•	•	•	•	•	•	•	•
tsi		11/4	•	٠	•	•	•	•	٠	•	_	•	•
o		11/2		•	•	•	•	•	•	•	_	•	•
		2		•	•	•		•		•	—	•	
Page		P.4.2-	3 to P.4.	2-10	P.4.2	-11 to P.	4.2-18	P.4.2-19 t	o P.4.2-26	P.4.2-27 to P.4.2-32	P.4.2-33 to	P.4.2-40	

2 Port Valve for Comressed Air and Air-hydro Circuit Control **Process Valve**

Series VNA

Universal 2 Port Valve

Exclusively for air pressure system and air-hydro circuit control

The cylinder operation by external pilot air

The balance poppet permits normal and reverse flow.

Operation from 0 MPa is possible

Wide variations N.C., N.O., C.O., are available. Screw-in styles, 6A to 50A, are standardized.

Compressed Air

Air pressure circuit: Application examples

Operation capacity when used in air-hydro units

This series can supplement the capacity of conventional air-hydro valve units. They are suited to operate large bore cylinders as well as to simultaneously operate mutliple cylinders and suspend their operation. Thus they can be used in the same as the convetional air-hydro units.

Air-hydro circuit: Application example

▲ Caution When speed controller is mounted

Connect a speed controller (Series AS etc.) to A port (cast in body A)of $VNA^{+}11$ (in order to protect the speed control valve from surges when cylinder operation is suspended, thus improving stopping accuracy)

Caution Skip valve function

Combination of 2 or more valves of Series VNA provides a skip valve function. Connect the skip valve to the A port side of a stop valve as in the case of the speed control valve.

Air operated valve

Model

	Dort Size	Orifico cizo	Flow rate		Weight (kg)	
Model	Rc(PT)	ø (mm)	Ne/min	Effective area (mm²)	Air operated	Solenoid
VNA1□□□-6A	1⁄8		687.05	13		
VNA1□□□-8A	1/4	10	1275.95	23	0.1	0.2
VNA1□□□-10A	3⁄8		1963.00	35		
VNA200-10A	3⁄8	15	3729.70	70	0.0	0.4
VNA200-15A	1/2	15	4907.50	90	0.3	0.4
VNA3□□□-20A	3⁄4	20	7852.00	140	0.5	0.6
VNA4□□□-25A	1	25	11778.00	220	0.8	0.9
VNA500-32A	11/4	32	17667.00	320	1.3	1.4
VNA6□□□-40A	11/2	40	27482.00	500	2.1	2.2
VNA7□□□-50A	2	50	42204.00	770	3.1	3.2

Valve Specifications

Fluid			Refer to table 1 on page 4.2-4.				
Fluid	VNA		−5 to 60°C ⁽¹⁾				
FIUIO	1/010		−5 to 99°C ⁽¹⁾				
temperature	VINA		(Only air operated)				
Ambient temperature			-5 to 50°C (Air operated: 60°C) ⁽¹⁾				
Proof pressure			1.5MPa				
Operating press	sure rar	nge	0 to1MPa				
		Pressure range	0.2 to 0.7MPa				
External pilot ai	r	Lubrication	Not required (Use turbine oil No.1 (ISO VG32) if lubricated) (2)				
		Temperature	-5°C to 50°C(Air operated: 60°C)				
Note 1) No freezing			Note 2) Lubrication is not allowed in case of seal material EPR				

Pilot Solenoid Valve Specifications

Pilot Solen	oid	Valve S	pecifications		VY	
Port size			6A to 25A	32A to 50A	V A	
Pilot solenoid valve	•		SF4-□□□-23			
Electrical entry			DIN connector	DIN connector	VINL	
Coil rated	AC(50/60Hz)	100V, 200V	Others(Option)	VO	
voltage(V)		DC	24V, Othe	VQ		
Allowable voltage			-15% to +10%	o(rated voltage)		
Coil insulation			Class B or	VDW		
Temperature rise			≤35°C (Application of rated voltage)	≤70°C (Application of rated voltage)	VC	
•		Inrush	5.6VA(50Hz), 5.0VA(60Hz)	12VA(50Hz), -10.5VA(60Hz)		
Apparent power	AC	Holding	3.4VA(50Hz), 2.3VA(60Hz)	7.5VA(50Hz), 6VA(60Hz)	LV	
Power consumption DC		1.8W 4.8W				
Manual override		Non-locking push style Others (Option)	Non-locking push style	PA		

Symbol

Valve	N.C.	N.O.	C.O.
Style	Normally closed	Normally open	Double acting
	VNAD01	VNAD02	VNAD03
Air operated			
	VNA□11	VNA 12	
External pilot solenoid			

Flow Characteristics

Turbine oil (ISO VG32)

How to Read The Graph

In the sonic flow region: For a flow of 6000 (d/min) VNA4mmm(Orifice@25)...P1 \cong 0.14MPa VNA4mmm(Orifice@20)...P1 \cong 0.28MPa VNA4mmm(Orifice@15)...P1 \cong 0.5MPa

How to Calculate Flow

<Air and other gases>

Equation in the domain of subsonic flow
Calculation by Cy factor

Q=4080·Cv·
$$\sqrt{\frac{\Delta P(P2+0.1013)}{G}}$$
· $\sqrt{\frac{273}{273+\theta}}$
...... ℓ /min (ANR)

Calculation by effective area

$$\begin{array}{c} Q=&226 \cdot S \cdot \sqrt{\frac{\Delta P(P_{2}+0.1013)}{G}} \cdot \sqrt{\frac{273}{273+\theta}} \\ & \cdots \cdots \ell \ / \text{min (ANR)} \end{array}$$

2 Equation in the domain of sonic flow

• Calculation by effective area

Q=113·S·(P1+0.1013)
$$\frac{1}{\sqrt{G}} \cdot \sqrt{\frac{273}{273+\theta}}$$

...... ℓ /min (ANR)

How to Read The Graph

In case of a flow of oil 100 t/min: VNA4 (Orificeø24).... $P \cong 0.035$ MPa VNA4 (Orificeø20)... $P \cong 0.08$ MPa VNA4 (Orificeø15)... $P \cong 0.2$ MPa

How to Calculate Flow

- Calculation by effective area Q=0.8·S· $\sqrt{\frac{10.2\Delta P}{G}}$ ℓ/min
- Note) Calculation error of fluid with viscosity of 50 cSt or less will be very small.

Symbol

- Q : Flow rate (Air and other gases *l*/min (ANR)) (Water and other liquids *l*/min)
- △P: Pressure differential (P1-P2)
- P1 : Upstream pressure (MPa)
- P2 : Downstream pressure (MPa)
- θ : Temperature of air and other gases (°C)
- S : Effective area (mm²) S \cong 17667. N/min
- Cv : Cv factor (/)
 - G : Specific gravity (/) Air/Water=1

Model	Main Port Rc(PT)	Pilot port Rc(PT)	А	В	С	D	E	F	G	J	М
VNA5□□□-32A	1 1/4	1⁄8	105	77	53	26.5	120.5	20	129.5	219.5	55
VNA6□□□-40A	11/2	1/4	120	96	60	30	137	24	147	237	63
VNA7□□□-50A	2	1/4	140	113	74	37	160	24	170	260	74

Construction

N.O.

Operation Principles

VNA□01□, □11□ (N.C.)

When the pilot solenoid valve (a) is not energized (or when air is exhausted from the P1 port of the air operated style),the valve element (4) linked to the piston (5) is closed by the return spring (7).

•When valve element opens

When the pilot solenoid valve is energized (or when pressuried air enters through the P1 port of the air operated style), the pilot air that has entered under the piston moves it upward to open the valve element. •When valve element opens

When the power to the pilot solenoid valve is turned off (or when air is exhausted from the P1 port of the air operated style), the pilot air under the piston is exhausted, and the return spring closes the valve element. $VNA\square 02\square$, $\square 12\square$ (N.O.)

In contrast with the N.C., when the power to the pilot solenoid valve is turned off (or when air is exhausted from the P2 port of the air operated style), the valve is held open by the return spring. When the pilot solenoid valve is energized (or when pressurized air enters through the P2 port of the air operated style), the valve element closes.

VNA□03□ (C.O.)

The valve element of the C.O. type, which has no return spring, is in an arbitary position when air is exhausted through the P1 and P2 ports. When pressurized air enters the P1 port (exhaust from the P2 port), the valve element opens, and it closes when pressurized air enters the P2 port (exhaust from the P1 port).

No.	Description	Material	Note		
1	Body	Aluminium alloy	Platinum silver painted		
2	Cover assembly	Aluminium alloy	Platinum silver painted		
3(1)	Plate assembly	Aluminium alloy	Valve material(NBR, FPM, EPR)		
(4) ⁽¹⁾	Valve element	Aluminium alloy	Valve material(NBR, FPM, EPR)		
(5)	Piston assembly	Aluminium alloy	—		
6	Travel spring	Stainless steel	—		
7	Return spring	Piano wire	—		
8	Pilot solenoid valve	_	—		

Note 1) Parts (3), (4) are for selection of valve composition.

Replacement Parts

<u> </u>	•											
				Part No.								
No	Descrin	Description			VNA2	VNA3		VNA5	VNA6			
NO.	Decemption			-6A, 8A, 10A	-10A, 15A	-20A	-25A	-32A	-40A	-50A		
	Diata	Value	NBR	VN1-A3AA	VN2-A3AA	VN3-A3AA	VN4-A3AA	VN5-A3AA	VN6-A3AA	VN7-A3AA		
3	assembly	material	FPM	VN1-A3AB	VN2-A3AB	VN3-A3AB	VN4-A3AB	VN5-A3AB	VN6-A3AB	VN7-A3AB		
			EPR	VN1-A3AC	VN2-A3AC	VN3-A3AC	VN4-A3AC	VN5-A3AC	VN6-A3AC	VN7-A3AC		
	Valve disc	Value	NBR	VN1-4AA	VN2-4AA	VN3-4AA	VN4-A4AA	VN5-A4AA	VN6-A4AA	VN7-A4AA		
4	(Valve disc a'ssy for	material	FPM	VN1-4AB	VN2-4AB	VN3-4AB	VN4-A4AB	VN5-A4AB	VN6-A4AB	VN7-A4AB		
	25A-50A)		EPR	VN1-4AC	VN2-4AC	VN3-4AC	VN4-A4AC	VN5-A4AC	VN6-A4AC	VN7-A4AC		
8	Pilot solenoid valve			SF4-	□□□-23 (Refer	to p.4.2-10 for de	VO301-00□□	(Refer to p.4.2	-10 for details)			

VX VN□ VQ VDW VC LV

A Precautions

Be sure to read before handling. Refer to p.0-33 for Safety Instructions and p.0-37 to 0-40 for common precautions.

External Pilot

▲ Caution

Pilot port piping Please arrange P₁ and P₂ piping as follows according to the model.

Port	VNAD01D	VNAD02D	VNAD03D	
P 1	External	Bleed	External	Pilot
	pilot	port	pilot	exhaust
P2	Bleed	External	External	Pilot
	port	pilot	pilot	exhaust

It is recommended to mount a silencer in the EXH port and the bleed port for noise reduction and dust entry prevention.

Piping

▲ Caution

To use the piping with a high temperature fluid, use heat resistant fittings and tubes.

(Self-align fittings, Teflon $^{\textcircled{B}}$ tube copper pipe, etc.) Teflon is a registered trademark of Dupont.

Use with Air-hydro Unit

▲ Warning

1.Piping

When operation is suspended, surge pressure will be generated between the cylinder and VNA□11A. To directly thread in the cylinder, use durable fittings (SUS square nipples etc.) instead of ductile

iron fittings (JIS B 2301) or steel pipe fittings (JIS B 2302).

When VNA \Box 11A is to be installed away from the cylinder, use a high-pressure rubber hose (JIS B 6349) instead of steel pipe as much as possible.

▲ Caution

1.Air bleeding

Valves of Series VNA have no air bleeding port. Bleed air from the middle piping. Bleeding by a vaccum pump is more effective.

2.Hydraulic fluid

Turbine oil, Grade 1, ISO VG32, with petroleum hydraulic fluid is recommended.

3.Speed control valve

The combination shown in the following table is recommended to bring the best of Series VNA. (Piping: JIS K 6349 high pressure hose)

Combination of Series VNA and flow control valve (Series AS)

	VNA	AS	Piping (I.D.)
10A	111	420-03	³ ⁄8 B(ø9.5)
15A	211	420-04	¹ / ₂ B(ø12.7)
20A	311	500-06	³ ⁄ ₄ B(ø19.1)
25A	411	600-10	1B(ø25.4)
32A	511	800-12	11⁄4 B(ø31.8)
40A	611	900-14	11/2 B(ø38.1)
504	711	900-20	2B(ø50.8)

