For General Purpose 2/3 Port Valve

Process Valve/Series VN

The cylinder operation by external pilot airCan be operated with pressure differential zero.Wide variations

For controlling the high pressure cutting oils and coolants used in machine tools. Maximum operating pressure: 3.5MPa, 7MPa

For steam control PTFE seal adopted With indicator (Option)

Series VN

Process Valve

Series			Pro	Process valve Series VNA			Process valve Series VNB			nt valve s VNC	Coolant valve for high pressure Series VNH	Steam valve Series VND	
Valve Style		N.C.	N.O.	C.O.	N.C.	N.O.	C.O.	N.C.	N.O.	N.C.	N.C.	N.O.	
<u>פ</u>	Water					•	•	•	—		—	—	
l∰	Air		•	•	•	•	•	•	—	—			—
ple	Oil			•	•	•	•	•	•	•	•	—	—
ica	Low vacuum (1 Torr)			—	_	•	•	•	—	—	—		—
Idd	Coolant			—	—			—	•	•	•		—
$\overline{\triangleleft}$	Steam			—	—						—	•	•
		1/8		•	•	•	•	•	•	•	—	•	
		1/4	•	•	•	•	•	•	•	•	_	•	•
		3⁄8	•	•	•	•	•	•	•	•	•	•	•
		1/2	•	•	•	•	•	•	•	•	•	•	•
	Rc(PT)	3⁄4	•	•	•	•	•	•	•	•	•	•	•
Ze	· · ·	1	•	•	•	•	•	•	•	•	•	•	•
tsi	-	11/4	•	٠	•	•	•	•	٠	•	_	•	•
2 C		11/2		•	•	•	•	•	•	•	_	•	•
		2		•	•	•		•		•	—	•	
Page		P.4.2-	3 to P.4.	2-10	P.4.2	-11 to P.	4.2-18	P.4.2-19 t	o P.4.2-26	P.4.2-27 to P.4.2-32	P.4.2-33 to	P.4.2-40	

VND

VND

Model

Madal	Port size	Orifice size	Flov	Weight		
IVIODEI	IVIODEI Rc(PT) Ø (mm)		Nℓ/min	Effe. area (mm ²)	(kg)	
VND10D-6A	1/8		687.05	13		
VND10D-8A	1/4	7	981.50	18	0.3	
VND10D-10A	3/6		1275.95	23		
VND20D-10A	78	15	3729.70	70	0.6	
VND20D-15A	1/2	15	4907.50	90	0.6	
VND30D-20A	3⁄4	20	7852.00	140	0.9	
VND40D-25A	1	25	11778.00	220	1.4	
VND50D-32A	11/4	32	17667.00	320	2.3	
VND60D-40A	11/2	40	27482.00	500	3.6	
VND70D-50A	2	50	43304.50	770	5.7	

Valve Specifications

Fluid			Steam					
Fluid ter	nperature		–5 to180°C*					
Ambient	temperate	ure	–5 to 60°C*					
Proof pr	essure		1.5MPa					
Operatir	ng pressur	e range	0 to 0.97MPa					
	Proceuro	N.C.	0.3 to 0.7MPa					
External	Fiessure	N.O.	0.1 to 0.5MPa Reffer to table ① for application					
pilot air	Lubri	cation	Not required (Use turbine oil No. 1(ISO VG32), if lubricated.)					
	Temp	parature	−5 to 60°C*					

Symbol

VX

Flow Characteristics

Saturated Steam

How to Read The Graph

In the sonic flow region: For a flow of 500 Kg/h VND30 \Box D (Orifice ø20).....P¹ \cong 0.55MPa VND40 \Box D (Orifice ø25).....P¹ \cong 0.3MPa

How to Calculate Flow

 Equation in the domain of subsonic flow
 Calculation by Cv factor
Q=198·Cv·,√△P(P2+1.033) ······kg/h
 Calculation by effective area
Q=11·S·
② Equation in the domain of sonic flow
 Calculation by Cv factor
Q=98.9.Cv.(p1+1.033)kg/h
 Calculation by effective area
Q=5.51·S·(P1+1.033)······kg/h

Flow Characteristics

Water/VND 2 to 7 should be N.O. to suppress water hammer.

How to Read The Graph

In case of a water flow of 100 d/min. VND40 \square (Orifice Ø25) $\cdots \triangle P \cong 0.035MPa$ VND30 \square (Orifice Ø20) $\cdots \triangle P \cong 0.08MPa$ VND20 \square (Orifice Ø15) $\cdots \triangle P \cong 0.2MPa$

How to Calculate Flow/Water

- <Water and other liquids>
- Calculation by Cv factor

$$Q=14.2 \cdot Cv \cdot \sqrt{\frac{10.2\Delta P}{G}} \cdots \ell/min$$

Calculation by effective area

$$Q=0.8 \cdot S \cdot \sqrt{\frac{10.2\Delta P}{G}} \cdots \ell / min$$

Note) Calculation error of fluid with viscosity of 50 cst or less will be very small.

Symbol

- Q : Flow rate (Air and other liquids e/min)
- ΔP : Pressure differential(P1-P2)
- P1: Upstream pressure (MPa)
- P2: Downstream pressure(MPa)
- S : Effective area(mm²) S \cong 17667.00N//min
- Cv: Cv factor (/)
- G : Specific gravity (/) Air/Water =1

Construction

Component Parts

No.	Description	Material	Note
1	Body	Bronze*	Clear coated
2	Cover assembly	Aluminum alloy	Platinum silver painted
3	Plate assembly	Brass*	PTFE, EPR, FPM
4	Valve element	Valve material (PTFE)	Brass*
(5)	Piston assembly	Aluminum alloy	—
6	Return spring	Piano wire	_
\overline{O}	Second plate ass'y	Aluminum alloy	
	-	•	•

* Body option S is made of stainless steel.

Operation Principles

VND \square 0⁰/₄ \square (N.C.):

When fluid is exhausted from the P1 port, the valve ④ connected with the piston ⑤ is closed by the return spring ⑥ • When valve opens

When pressurized air enters through the P1 port, the valve piston moves upward by the pilot air that enters below the piston and the valve element opens.

When valve closes:

When fluid is exhausted from the P1 port, the pilot air below the piston is exhausted and the valve element is closed by the return spring.

VND 02 (N.O.)

In contrast with the N.C., when air is exhausted from the P2 port, the return spring opens the valve element. Pressurized air that enters through the P2 port closes the valve element.

VND

Port size 1	0A, 15A, 20)A, 2	5A													
	F G(At valve open)			-B-B-	or (Opti	on) set (Opt	ion)				Pilot 2-Ro Ma 2-1	port c(PT) ¹ / ₈ ain port Rc(PT)				
Model	Rc(PT)	A	В	С	D	E	F	G	М	N	Р	Q	R	S	Т	U
	3/8	63	42	28	14	73.5	81.5	4	52	26	4.5	24.3	2.3	25	34	56
	3/4	80	50	35	17.5	85	03	5	62	31	5.5	28.3	23	30	/3	61.5
VND40D-25A	1	90	60	40	20	101	109	6	72	36	6.5	33.3	2.3	35	49	74

APrecautions

Be sure to read before handling. Refer to p.0-33 for Safety Instructions p.0-37 to 0-40 for common precautions.

External Pilot

▲ Caution

Piping of pilot port (P1, P2) P1 and p2 piping should be as follows according to the model.

Port	VND⊡O⊡D	VND O2D
P1	External pilot	Exhaust
P2	Exhaust	External pilot

It is recomended to mount a silencer in the bleed port to prevent entry of dust into the valve.

Piping

▲ Caution

To use the piping with a high temperature fluid, use heat resistant fittings and tubes. (Self-align fittings, Teflon tube or copper pipe, etc.) Teflon is a registered trademark of DuPont.

Adiabatic Space

▲ Caution

There is a space between body and cover

